Leveraging artificial intelligence/machine learning-based technology to overcome specialized training and technology barriers for the diagnosis and prognostication of colorectal cancer in Africa
利用基于人工智能/机器学习的技术克服非洲结直肠癌诊断和预测的专业培训和技术障碍
基本信息
- 批准号:10712793
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-15 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdjuvantAfricaAfricanAlgorithmic AnalysisAlgorithmsArchitectureAreaArtificial IntelligenceBiologicalBreastCancer DetectionCancer EtiologyCancer PrognosisCellsCellular MorphologyCervicalCessation of lifeClassificationClinicalCollaborationsColorectal CancerCommunitiesComputer Vision SystemsComputer softwareComputersCountryDataData ScienceDiagnosisDiagnosticDiseaseE-learningEarly DiagnosisEducationEyeFundingFutureGoalsHematoxylin and Eosin Staining MethodHistologicHistologyHistopathologyHospitalsHumanImageImage AnalysisIncidenceIncomeIndividualInfrastructureInterventionKenyaMachine LearningMalignant NeoplasmsMeasurementMethodsMichiganOncologistOnline SystemsOutcomePathologistPathologyPatternPerformancePhysical shapePopulationPrognosisProstatePublic HospitalsRadiation OncologistReagentRecommendationReproducibilityResearchResearch Project GrantsResourcesRetrospective cohortRisk AssessmentRuralServicesSiteSlideStainsSurgeonSystemTechniquesTechnologyTextureTherapeuticTissue SampleTrainingTreatment EffectivenessUniversitiesUniversity HospitalsWorkaccurate diagnosiscancer carecancer diagnosisclinical careclinically relevantcohortcomputational pipelinescostdeep learningdiagnostic algorithmdigitaldigital imagingimaging Segmentationinnovationmachine learning methodmachine visionmortalityopen sourceprognosticprognosticationprogramsrisk stratificationroutine imagingscreeningsupervised learningsupport toolssurvivorshiptertiary caretooltreatment planningtumorunsupervised learningvector
项目摘要
SUMMARY/ABSTRACT
Colorectal cancer (CRC) is the third most commonly diagnosed cancer and the second leading cause of
cancer related deaths worldwide. Rates in Africa are on the rise, but essential histopathology services critical
for cancer care are scarce. To address this barrier, we developed an artificial intelligence (AI)/machine learning
(ML)-based computational pipeline (SIVQ/VIPR) that performs automated pixel-level image segmentation and
classification from digital images of routinely collected hematoxylin and eosin (H&E)-stained slides. SIVQ/VIPR
is highly precise, reproducible, and outperforms subject matter experts. Once histologically distinct regions are
identified, image analysis algorithms can then identify individual regions and aggregate them to predict
diagnostic and prognostic features in conjunction with clinical outcomes to guide treatment. Our overall
approach is to leverage our validated SIVQ/VIPR computational pipeline to develop and validate an AI-based
diagnostic decision support (AI-DDS) tool for CRC diagnosis and prognosis in an existing Kenyan cohort. To
carry out this work, the Aga Khan University (AKU)- East Africa and the University of Michigan have partnered
with Tenwek Hospital, a non-academic community-based public hospital in rural Bomet, Kenya, to develop a
unique collaboration of oncologists, pathologists, surgeons, statisticians, and informaticians, making us
uniquely suited to develop population-relevant, affordable, and scalable data science solutions in Kenya – all
priorities of the DS-I Africa Program. We will: Aim 1. Adapt and validate an existing ML-based diagnostic
algorithm for CRC using digital fields of view from H&E-stained slides in a retrospective cohort of n=675 CRC
cases from the AKU and Tenwek Hospitals. We will apply the CRC-trained SIVQ/VIPR computational pipeline
for segmentation and classification for CRC features, followed by a confirmatory classifier step to achieve a
case level, binary result of a cancer/no-cancer (i.e., diagnosis). Aim 2. Develop and refine an unsupervised ML
method to identify histopathology image-derived measurements associated with CRC
prognosis.
We will use
computer/machine vision approaches to identify image features (e.g., cellular morphology) discriminative of
CRC prognosis and biological potential for disease aggressiveness. Combined use of AI-based morphological
signatures of aggressive disease (e.g., high-grade tumor architecture) will be compiled with other clinically
relevant features towards the goal of generating a multi-axial multiplexed AI-DDS tool that can maximally
inform of the biological and metastatic potential of each CRC case. This project will lay the groundwork for an
AI-DDS tool for clinicians (e.g., pathologists, oncologists) that facilitates prompt and accurate diagnosis,
prognosis, and risk stratification for CRC care in Africa. Because this approach leverages open-source
software and can be deployed as a turn-key system intended for web-based cloud deployment, it is well-suited
for capacity building, integrating into educational programs, and expanding to other emergent or prevalent
cancers (i.e., breast, cervical, prostate) as part of the DS-I Africa Consortium.
摘要/摘要
结直肠癌(CRC)是第三大常见的癌症,也是第二个主要原因
全世界与癌症有关的死亡。非洲的比率正在上升,但基本的组织病理学服务至关重要
因为癌症护理很少。为了解决这一障碍,我们开发了人工智能(AI)/机器学习
(ML)基于自动像素级图像分割和
从常规收集的苏木精和曙红(H&E)染色的幻灯片的数字图像进行分类。 SIVQ/VIPR
高度精确,可重现且优于主题专家。一旦组织学不同的区域是
识别,图像分析算法可以识别单个区域并汇总以预测
诊断和预后特征与临床结果一起指导治疗。我们的整体
方法是利用我们经过验证的SIVQ/VIPR计算管道来开发和验证基于AI的
现有肯尼亚队列中CRC诊断和预后的诊断决策支持(AI-DDS)工具。到
进行这项工作,Aga Khan大学(AKU) - 东非和密歇根大学已经合作
在肯尼亚乡村的一家非学术社区公立医院Tenwek医院,开发
肿瘤学家,病理学家,外科医生,统计学家和信息能力的独特合作,使我们
独特地适合于肯尼亚开发与人口相关,负担得起和可扩展的数据科学解决方案 -
DS-I非洲计划的优先事项。我们将:AIM 1。适应并验证现有的基于ML的诊断
在回顾性n = 675 CRC中,使用H&E染色幻灯片的数字视野用于CRC算法
来自AKU和Tenwek医院的病例。我们将应用经CRC训练的SIVQ/VIPR计算管道
用于CRC特征的分割和分类,然后进行确认分类器步骤以实现
病例水平,癌症/无癌的二元结果(即诊断)。目标2。开发和完善无监督的ML
识别与CRC相关的组织病理学图像衍生测量的方法
预后。
我们将使用
计算机/机器视觉方法以识别图像特征(例如细胞形态)的歧视性
CRC预后和疾病侵略性的生物潜力。基于AI的形态的联合使用
侵略性疾病的签名(例如,高级肿瘤结构)将与其他诊所合并
相关功能朝着生成多轴多路复用AI-DDS工具的目标
告知每种CRC病例的生物学和转移潜力。这个项目将为
临床医生(例如病理学家,肿瘤学家)的AI-DDS工具,可促进及时准确的诊断,
非洲CRC护理的预后和风险分层。因为这种方法利用开源
软件可以作为用于基于Web的云部署的交钥匙系统部署,非常适合
用于能力建设,融入教育计划,并扩展到其他新兴或普遍的
作为DS-I非洲财团的一部分,癌症(即乳房,宫颈,前列腺)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ulysses Gregory John Balis其他文献
Ulysses Gregory John Balis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
穿透性靶向胰腺癌内cDC1的纳米佐剂调控溶酶体逃逸促进放疗诱导ICD的机制研究
- 批准号:82303680
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多级改造的工程化外泌体自佐剂疫苗平台实现鼻上皮细胞感染拟态和粘膜递送的研究
- 批准号:32371440
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
展示PD-L1抗体的纳米锰佐剂联合放疗以诱导原位肿瘤疫苗的产生及其机制的探究
- 批准号:32371518
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
靶向FPPS的双磷酸疫苗佐剂的开发
- 批准号:82341040
- 批准年份:2023
- 资助金额:100 万元
- 项目类别:专项基金项目
应用于冠状病毒广谱疫苗开发的新型全链式免疫增强型佐剂研究
- 批准号:82341036
- 批准年份:2023
- 资助金额:110 万元
- 项目类别:专项基金项目
相似海外基金
Evaluation of a Next Generation SchistoShield Vaccine
下一代 SchistoShield 疫苗的评估
- 批准号:
10761529 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Baseline host and environmental factors that impact pre-erythrocytic malaria vaccine (hypo)responsiveness in endemic regions
影响流行地区红细胞前疟疾疫苗(低)反应性的基线宿主和环境因素
- 批准号:
10348223 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Baseline host and environmental factors that impact pre-erythrocytic malaria vaccine (hypo)responsiveness in endemic regions
影响流行地区红细胞前疟疾疫苗(低)反应性的基线宿主和环境因素
- 批准号:
10586094 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Systems biological assessment of innate responses to vaccination
对疫苗接种先天反应的系统生物学评估
- 批准号:
10584566 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Systems biological assessment of innate and adaptive immunity to vaccination
对疫苗接种的先天性和适应性免疫的系统生物学评估
- 批准号:
10419275 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别: