Project 1
项目1
基本信息
- 批准号:10270393
- 负责人:
- 金额:$ 57.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-16 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:Adult GlioblastomaAnisotropyApoptosisBrainBrain NeoplasmsCD 200Cancer PrognosisCellsCessation of lifeChemotaxisClinicalClinical TrialsComputer ModelsCytotoxic agentDataDevelopmentDiffuseEngineeringEnvironmentExclusion CriteriaFailureFlu virusFluorescence MicroscopyFrequenciesGenetic EngineeringGenetically Engineered MouseGenome engineeringGlioblastomaGliomaHumanImmuneImmune responseImmunizationImmunocompetentImmunological ModelsImmunologicsImmunosuppressionImmunotherapyIn VitroMalignant - descriptorMalignant NeoplasmsMalignant neoplasm of pancreasMeasurementMechanicsMediatingMesenchymalMicroscopyModelingMusOncogenicOperative Surgical ProceduresOpticsOutcomePatientsPeptidesPharmaceutical PreparationsPhenotypePositioning AttributePrognosisProliferatingPublishingRadiationRiskSleeping BeautySliceSolid NeoplasmT-LymphocyteTestingTherapeuticTractionTranslatingTwo-Parameter ModelVaccinationVaccinesanti-tumor immune responsebrain tissuecancer cellcell killingcell motilitychemotherapyclinical riskclinically actionablecombinatorialcomputational platformcomputer frameworkconfocal imagingcytokinedigitalengineered T cellsexhaustionexperienceexperimental studygenome-wide analysishuman diseaseimmunoengineeringimmunotherapy trialsin vivoinnovationinsightmigrationmouse modelneoplasm immunotherapyneoplastic celloutcome predictionpatient stratificationreceptorsimulationstandard of caresuccesstooltranscriptomicstumortumor progressiontwo-photonunpublished works
项目摘要
Abstract
In glioblastoma (GBM), cancer cells break away from the tumor mass and infiltrate into adjacent brain tissue.
Like other poor-prognosis cancers, GBM has been extensively analyzed by genome-wide transcriptomic
analyses. This has led to the identification of 3-4 subtypes that span a spectrum of states from “Proneural” (PN)
to “Mesenchymal” (MES). While the identification of subtypes is intriguing, it has yet to produce clinically-
actionable mechanistic insight. In our unpublished work, we discovered key mechanical signatures of these two
subtypes. Using our Sleeping Beauty (SB) immunocompetent genetically-induced mouse glioma model, we
found that the oncogenic driver NRasG12V promotes a MES-like phenotype and the oncogenic driver PDGFβ
promotes a PN-like phenotype. In addition, we found that NRas-driven tumors migrate fast and generate large
traction forces, while PDGFβ-driven tumors migrate slowly and generate weaker traction forces, features we also
observe with human cells in brain tissue. Thus, the two subtypes may each have their own distinct mechanical
weaknesses that can be effectively targeted. Since brute force trial-and-error of possible targets is not feasible,
we will manage complexity using the modeling approach that is widely used in engineering. As pointed out in the
Overall section of this proposal, the mobility of the cancer cells and the antitumoral T cells are both critical
determinants of tumor progression/regression, so we will apply our recently published “Cell Migration
Simulator” (CMS1.0) to cancer and immune cell migration and use experimental microscopy measurements
made in brain tissue to identify the model parameters for the two GBM subtypes. This will then allow us to identify
key mechanical vulnerabilities that will be tested using digital multiplex T cell genome engineering (as described
in Project 3) and will provide a computational platform for application to pancreatic cancer and immune cells (in
Project 2). To simulate the multicellular migration, proliferation, and immune-mediated killing dynamics, we will
apply our “Brownian Dynamics Tumor Simulator” (BDTS1.0) to predict the overall tumor dynamics of the
NRas (MES) and PDGFβ (PN) tumors. Interestingly, like the human disease, the NRas (MES) tumors are
immunologically ‘hot’, while the PDGFβ (PN) tumors are immunologically ‘cold’. Thus, the BDTS1.0, once
developed for these two subtypes of brain tumors, will allow us to predict the effects of emergent immunotherapy
concepts developed by our team, including CD200 peptide therapy and Peptide Alarm Therapy. By
constraining the simulators with data obtained by live cell fluorescence microscopy, we will develop a multiscale
computational model that provides mechanistic de-risking and optimization to maximize the physical proximity
and encounter frequency between antitumoral T cells and cancer cells. Together the modeling and experiments
will allow us to test our central hypothesis that T cell proximity to cancer cells is a major determinant of
successful immunotherapy of solid tumors.
抽象的
在胶质母细胞瘤(GBM)中,癌细胞脱离肿瘤质量并浸润到相邻的脑组织。
像其他不良预知癌一样,GBM已通过基因组转录组进行了广泛的分析
分析。
对于“间充质”(MES),亚型的鉴定是有趣的,但它尚未产生临床
在我们未发表的工作中,可行的机械洞察力。
亚型。
发现致癌驱动器NRASG12V促进了MES样表型和致癌驱动器PDGFββ
促进PN样表型。
牵引力,而PDGFβ驱动的肿瘤迁移并产生较弱的牵引力,但我们还具有
在脑组织中观察到人类细胞。
可以有效地针对目标的弱点
我们将使用工程广泛的建模方法来管理压缩方法。
该提案的总体部分,癌细胞和抗肿瘤T细胞的迁移率都是关键的
肿瘤程序/回归的决定因素/因此我们将应用我们最近发表的“细胞迁移
模拟器“(CMS1.0)进行癌症和免疫细胞迁移并使用实验测量
在脑组织中识别两个GBTYPE的模型参数。
关键的机械漏洞,使用数字多链体T细胞基因组工程测试
在项目3中),并将为应用于胰腺癌和免疫细胞的计算平台(在
项目2)。
应用我们的“布朗动力学肿瘤模拟器”(BDTS1.0)来预测您的整体肿瘤动力学
NRA(MES)和PDGFβ(PN)肿瘤。
在免疫学上“热”,而PDGFβ(PN)肿瘤一次是bdts1.0
为脑肿瘤的两个亚型开发
由我们的团队开发的概念,包括CD200肽疗法和肽警报疗法
通过通过活细胞荧光显微镜获得的数据来限制模拟器,我们将开发多尺度
提供机械抗风险和优化的计算模型,以最大化物理接近度
并在抗肿瘤T细胞和癌细胞之间遇到频率。
将使我们能够检验我们的中心假设,即对癌细胞的心电图是AA的主要决定
实体瘤的成功免疫疗法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David J. Odde其他文献
David J. Odde的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David J. Odde', 18)}}的其他基金
Modeling and microsystems approach to glioma invasion
神经胶质瘤侵袭的建模和微系统方法
- 批准号:
9067235 - 财政年份:2013
- 资助金额:
$ 57.6万 - 项目类别:
Modeling and microsystems approach to glioma invasion
神经胶质瘤侵袭的建模和微系统方法
- 批准号:
8847683 - 财政年份:2013
- 资助金额:
$ 57.6万 - 项目类别:
Modeling and microsystems approach to glioma invasion
神经胶质瘤侵袭的建模和微系统方法
- 批准号:
9268425 - 财政年份:2013
- 资助金额:
$ 57.6万 - 项目类别:
相似国自然基金
各向异性介质中的超声兰姆导波波前调控及新原理集成化功能器件研究
- 批准号:12374438
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
各向异性柔性覆层湍流边界层直接数值模拟研究
- 批准号:12362022
- 批准年份:2023
- 资助金额:31 万元
- 项目类别:地区科学基金项目
带电流型畸变校正的大地电磁三维各向异性自适应反演研究
- 批准号:42304081
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
翁通爪哇洋底高原及其周边壳幔三维各向异性速度结构及构造意义
- 批准号:42376080
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
高各向异性FeCoNi/碳纳米管-石墨烯复合材料的多场耦合构筑及其低频超宽带吸波性能
- 批准号:52301239
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
pH dynamics determining DNA binding specificity of FOX transcription factors
pH 动态决定 FOX 转录因子的 DNA 结合特异性
- 批准号:
10576266 - 财政年份:2022
- 资助金额:
$ 57.6万 - 项目类别:
pH dynamics determining DNA binding specificity of FOX transcription factors
pH 动态决定 FOX 转录因子的 DNA 结合特异性
- 批准号:
10389680 - 财政年份:2022
- 资助金额:
$ 57.6万 - 项目类别:
Cardiomyocyte-specific modified mRNA of Pkm2 for induction of cardiac regeneration in ischemic heart failure
心肌细胞特异性修饰的 Pkm2 mRNA 用于诱导缺血性心力衰竭的心脏再生
- 批准号:
10161817 - 财政年份:2018
- 资助金额:
$ 57.6万 - 项目类别:
Molecular Basis for Regulation of Cellular Stress Response Pathways by CBP/p300
CBP/p300 调节细胞应激反应途径的分子基础
- 批准号:
10436187 - 财政年份:2018
- 资助金额:
$ 57.6万 - 项目类别: