Project 1
项目1
基本信息
- 批准号:10700935
- 负责人:
- 金额:$ 55.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-16 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:Adult GlioblastomaAnisotropyApoptosisBrainBrain NeoplasmsCD 200Cancer PrognosisCellsCessation of lifeChemotaxisClinicalClinical TrialsCytotoxic agentDataDevelopmentDissociationEngineeringEnvironmentExclusion CriteriaFailureFlu virusFluorescence MicroscopyFrequenciesGenetic EngineeringGenetically Engineered MouseGenome engineeringGlioblastomaGliomaHumanImmuneImmune responseImmunocompetentImmunologic StimulationImmunologicsImmunosuppressionImmunotherapyIn VitroInfiltrationMalignant - descriptorMalignant NeoplasmsMalignant neoplasm of pancreasMeasurementMechanicsMediatingMesenchymalMicroscopyModelingMusOncogenicOperative Surgical ProceduresOpticsOutcomePatientsPeptidesPharmaceutical PreparationsPhenotypePositioning AttributePrognosisProliferatingPublishingRadiationSleeping BeautySliceSolid NeoplasmT-LymphocyteTestingTherapeuticTractionTranslatingTwo-Parameter ModelVaccinationVaccinesanti-tumor immune responsebrain tissuecancer cellcell killingcell motilitychemotherapyclinical riskclinically actionablecombinatorialcomputational platformcomputer frameworkconfocal imagingcytokinedigitalengineered T cellsexhaustionexperienceexperimental studygenome-widehuman diseaseimmunoengineeringimmunotherapy trialsin vivoinnovationinsightmigrationmouse modelmulti-scale modelingneoplasm immunotherapyneoplastic cellnovel therapeutic interventionoutcome predictionpatient stratificationreceptorsimulationstandard of caresuccesstooltranscriptomicstumortumor progressiontwo-photonunpublished works
项目摘要
Abstract
In glioblastoma (GBM), cancer cells break away from the tumor mass and infiltrate into adjacent brain tissue.
Like other poor-prognosis cancers, GBM has been extensively analyzed by genome-wide transcriptomic
analyses. This has led to the identification of 3-4 subtypes that span a spectrum of states from “Proneural” (PN)
to “Mesenchymal” (MES). While the identification of subtypes is intriguing, it has yet to produce clinically-
actionable mechanistic insight. In our unpublished work, we discovered key mechanical signatures of these two
subtypes. Using our Sleeping Beauty (SB) immunocompetent genetically-induced mouse glioma model, we
found that the oncogenic driver NRasG12V promotes a MES-like phenotype and the oncogenic driver PDGFβ
promotes a PN-like phenotype. In addition, we found that NRas-driven tumors migrate fast and generate large
traction forces, while PDGFβ-driven tumors migrate slowly and generate weaker traction forces, features we also
observe with human cells in brain tissue. Thus, the two subtypes may each have their own distinct mechanical
weaknesses that can be effectively targeted. Since brute force trial-and-error of possible targets is not feasible,
we will manage complexity using the modeling approach that is widely used in engineering. As pointed out in the
Overall section of this proposal, the mobility of the cancer cells and the antitumoral T cells are both critical
determinants of tumor progression/regression, so we will apply our recently published “Cell Migration
Simulator” (CMS1.0) to cancer and immune cell migration and use experimental microscopy measurements
made in brain tissue to identify the model parameters for the two GBM subtypes. This will then allow us to identify
key mechanical vulnerabilities that will be tested using digital multiplex T cell genome engineering (as described
in Project 3) and will provide a computational platform for application to pancreatic cancer and immune cells (in
Project 2). To simulate the multicellular migration, proliferation, and immune-mediated killing dynamics, we will
apply our “Brownian Dynamics Tumor Simulator” (BDTS1.0) to predict the overall tumor dynamics of the
NRas (MES) and PDGFβ (PN) tumors. Interestingly, like the human disease, the NRas (MES) tumors are
immunologically ‘hot’, while the PDGFβ (PN) tumors are immunologically ‘cold’. Thus, the BDTS1.0, once
developed for these two subtypes of brain tumors, will allow us to predict the effects of emergent immunotherapy
concepts developed by our team, including CD200 peptide therapy and Peptide Alarm Therapy. By
constraining the simulators with data obtained by live cell fluorescence microscopy, we will develop a multiscale
computational model that provides mechanistic de-risking and optimization to maximize the physical proximity
and encounter frequency between antitumoral T cells and cancer cells. Together the modeling and experiments
will allow us to test our central hypothesis that T cell proximity to cancer cells is a major determinant of
successful immunotherapy of solid tumors.
抽象的
在胶质母细胞瘤(GBM)中,癌细胞脱离肿瘤质量并浸润到相邻的脑组织。
像其他不良预知癌一样,GBM已通过基因组转录组进行了广泛的分析
分析。这导致了3-4个亚型的鉴定,这些亚型跨越了“胸膜”(PN)的一系列状态
要“间充质”(MES)。尽管亚型的鉴定很有趣,但尚未在临床上产生
可行的机械洞察力。在未发表的工作中,我们发现了这两个的关键机械签名
亚型。使用我们的睡美人(SB)免疫能力遗传诱导的小鼠神经胶质瘤模型,我们
发现致癌驱动器NRASG12V促进了MES样表型和致癌驱动器PDGFβ
促进PN样表型。此外,我们发现NRAS驱动的肿瘤迁移迅速并产生较大
牵引力,而PDGFβ驱动的肿瘤迁移缓慢并产生较弱的牵引力,但我们还具有
在脑组织中观察到人类细胞。那两个亚型可以每个都有自己独特的机械
可以有效针对的弱点。由于可能目标的蛮力反复试验是不可行的,因此
我们将使用广泛用于工程的建模方法来管理复杂性。正如在
该提案的总体部分,癌细胞和抗肿瘤T细胞的迁移率都是关键的
确定肿瘤进展/回归,因此我们将应用最近发表的“细胞迁移
模拟器”(CMS1.0)进行癌症和免疫球迁移并使用实验显微镜测量
在脑组织中制成以识别两个GBM亚型的模型参数。这将使我们能够确定
将使用数字多重T细胞基因组工程测试将测试的关键机械漏洞(如所述
在项目3中),并将为应用于胰腺癌和免疫细胞的计算平台(在
项目2)。为了模拟多细胞迁移,增殖和免疫介导的杀戮动力学,我们将
应用我们的“布朗动力学肿瘤模拟器”(BDTS1.0)来预测总体肿瘤动力学
NRA(MES)和PDGFβ(PN)肿瘤。有趣的是,像人类疾病一样,NRA(MES)肿瘤是
免疫学上“热”,而PDGFβ(PN)肿瘤在免疫学上是“冷”。那是BDTS1.0,一次
为这两个亚型的脑肿瘤开发,将使我们能够预测新兴免疫疗法的影响
我们的团队开发的概念,包括CD200胡椒疗法和肽警报疗法。经过
通过通过活细胞荧光显微镜获得的数据来限制模拟器,我们将开发一个多尺度
提供机械抗风险和优化的计算模型,以最大化物理接近度
并在抗肿瘤T细胞和癌细胞之间遇到频率。一起建模和实验
将使我们能够检验中心假设,即T细胞与癌细胞的接近是
实体瘤的成功免疫疗法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David J. Odde其他文献
Computational Modeling of Tubulin-Tubulin Lateral Interaction: Molecular Dynamics and Brownian Dynamics
- DOI:
10.1016/j.bpj.2017.11.2751 - 发表时间:
2018-02-02 - 期刊:
- 影响因子:
- 作者:
Mahya Hemmat;David J. Odde - 通讯作者:
David J. Odde
Multi-Scale Computational Modeling of Tubulin-Tubulin Interactions in Microtubule Self-Assembly from Atoms to Cells
- DOI:
10.1016/j.bpj.2018.11.1398 - 发表时间:
2019-02-15 - 期刊:
- 影响因子:
- 作者:
Mahya Hemmat;Brian T. Castle;David J. Odde - 通讯作者:
David J. Odde
Highly Variable Microtubule Assembly Dynamics Reflect Near-Kilohertz Kinetics: Evidence Against Traditional Linear Growth Theory
- DOI:
10.1016/j.bpj.2009.12.1955 - 发表时间:
2010-01-01 - 期刊:
- 影响因子:
- 作者:
Melissa K. Gardner;Blake D. Charlebois;Imre M. Jánosi;Alan J. Hunt;David J. Odde - 通讯作者:
David J. Odde
Modeling of Motor Mediated Microtubule Bending
- DOI:
10.1016/j.bpj.2008.12.3747 - 发表时间:
2009-02-01 - 期刊:
- 影响因子:
- 作者:
Erkan Tuzel;Andrew D. Bicek;Aleksey Demtchouk;Maruti Uppalapati;William O. Hancock;Daniel M. Kroll;David J. Odde - 通讯作者:
David J. Odde
Optimization of CD200 checkpoint immunotherapy for treating glioblastoma
- DOI:
10.1016/j.bpj.2022.11.2251 - 发表时间:
2023-02-10 - 期刊:
- 影响因子:
- 作者:
Nikolaos Memmos;Jaciah Rashid;Elisabet Ampudia-Mesias;Michael Olin;David J. Odde - 通讯作者:
David J. Odde
David J. Odde的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David J. Odde', 18)}}的其他基金
Modeling and microsystems approach to glioma invasion
神经胶质瘤侵袭的建模和微系统方法
- 批准号:
9067235 - 财政年份:2013
- 资助金额:
$ 55.27万 - 项目类别:
Modeling and microsystems approach to glioma invasion
神经胶质瘤侵袭的建模和微系统方法
- 批准号:
9268425 - 财政年份:2013
- 资助金额:
$ 55.27万 - 项目类别:
Modeling and microsystems approach to glioma invasion
神经胶质瘤侵袭的建模和微系统方法
- 批准号:
8847683 - 财政年份:2013
- 资助金额:
$ 55.27万 - 项目类别:
相似国自然基金
晋冀交界地区地幔包体变形组构与地震波各向异性的关系及对华北克拉通破坏的启示
- 批准号:42304106
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
非线性耦合问题的各向异性高精度有限元方法新模式研究
- 批准号:12301474
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
各向异性复合材料微通道内碳氢燃料的流动换热机理研究
- 批准号:52302478
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于增材制造吸能点阵材料的各向异性冲击响应研究及调控设计
- 批准号:12302475
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
单轴各向异性介质中电磁散射问题快速求解算法
- 批准号:12371394
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
相似海外基金
pH dynamics determining DNA binding specificity of FOX transcription factors
pH 动态决定 FOX 转录因子的 DNA 结合特异性
- 批准号:
10576266 - 财政年份:2022
- 资助金额:
$ 55.27万 - 项目类别:
pH dynamics determining DNA binding specificity of FOX transcription factors
pH 动态决定 FOX 转录因子的 DNA 结合特异性
- 批准号:
10389680 - 财政年份:2022
- 资助金额:
$ 55.27万 - 项目类别:
Cardiomyocyte-specific modified mRNA of Pkm2 for induction of cardiac regeneration in ischemic heart failure
心肌细胞特异性修饰的 Pkm2 mRNA 用于诱导缺血性心力衰竭的心脏再生
- 批准号:
10161817 - 财政年份:2018
- 资助金额:
$ 55.27万 - 项目类别:
Molecular Basis for Regulation of Cellular Stress Response Pathways by CBP/p300
CBP/p300 调节细胞应激反应途径的分子基础
- 批准号:
10436187 - 财政年份:2018
- 资助金额:
$ 55.27万 - 项目类别: