Cochlear mechanics in the mouse
小鼠的耳蜗力学
基本信息
- 批准号:10614068
- 负责人:
- 金额:$ 62.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-05-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAffectAirAnatomyAnesthesia proceduresAnimalsArousalAuditoryAuditory systemBackBasic ScienceBasilar MembraneBiomechanicsBiomedical EngineeringBiophysical ProcessBrainCharacteristicsClinicalCochleaCochlear ductCompensationComplexDataDependenceDiameterEnvironmentExternal auditory canalFrequenciesHair CellsHeadHearingHearing AidsImageLeftMammalsMeasurementMeasuresMechanicsMedialMediatingMotionMusOptical Coherence TomographyOpticsOrgan of CortiOuter Hair CellsPainlessPhysiologyProcessProductionPupilReflex actionResearch Project GrantsResolutionRoleSpeechStructureSupporting CellSystemTechnologyTestingTimeTravelWalkingWild Type MouseWorkauditory stimulusawakebonecapsuledesignexperimental studyhearing impairmentin vivoindexinginnovationotoacoustic emissionpeerpressureresponserestraintsoundstemtectorial membranetreadmillvectorvibrationwalking speed
项目摘要
Project Summary/Abstract
Sound pressure produces force across the mammalian cochlear partition, ultimately creating a vibratory
traveling wave that propagates longitudinally up the cochlear duct. The key feature distinguishing this process
from the non-mammalian cochlea is amplification, whereby forces produced by thousands of outer hair cells
(OHCs) sharpen and amplify the traveling wave. Our overarching objective is to understand how the complex
biomechanics of the 3D multi-cellular and acellular arrangement that form the organ of Corti work together to
create cochlear amplification. Specifically, we will determine how this process, which stems from the broadly-
tuned basilar membrane, creates sharp frequency tuning and high sensitivity. This question is significant on a
basic science level because these biophysical processes underlie the ability to hear sounds just above the
Brownian motion of molecules in air with an exquisite frequency resolution. This question remains unsolved
and is clinically important because hearing loss is typically due to loss of cochlear amplification. Our central
hypothesis is that, beyond the broad tuning provided by basilar membrane mechanics, the forces produced by
OHCs are also tuned by additional mechanisms. In aim 1, we will use 3D Volumetric Optical Coherence
Tomography and Vibrometry (VOCTV) in mice to test whether the forces produced by OHCs are tuned by the
mechanics of the supporting cells and acellular structures that form the organ of Corti. In aim 2, we will use 1D
VOCTV in awake behaving mice to test whether cochlear amplification is modulated by brain state via the
medial olivocochlear efferent (MOC) system by varying OHC force production. Together, these data will be
interpreted so as to test our hypothesis. If our hypothesis is true, sharply-tuned differential motion within the
organ of Corti is necessary to generate the sensitivity and sharp tuning of the mammalian cochlea and brain
state modulates cochlear amplification via the MOC efferent system.
项目摘要/摘要
音压会在哺乳动物的人工耳蜗上产生力,最终产生振动
纵向传播的行驶波在人工耳蜗上传播。区分此过程的关键功能
从非哺乳动物的耳蜗中是放大的,从而由数千个外毛细胞产生的力
(OHC)锐化并扩大行驶波。我们的总体目标是了解复杂
形成Corti器官的3D多细胞和细胞排列的生物力学
创建耳蜗放大。具体而言,我们将确定这一过程是如何源于广泛的
调谐的基底膜,会产生清晰的频率调整和高灵敏度。这个问题对
基础科学层面是因为这些生物物理过程的能力是在
空气中分子的布朗运动,具有精致的频率分辨率。这个问题仍未解决
并且在临床上很重要,因为听力损失通常是由于人工耳蜗扩增的丧失。我们的中心
假设是,除了基底膜力学提供的广泛调整之外,由
OHC还通过其他机制调节。在AIM 1中,我们将使用3D体积光学连贯性
小鼠中的断层扫描和振动法(VOCTV)测试OHC产生的力是否由
形成Corti器官的支撑细胞和细胞结构的力学。在AIM 2中,我们将使用1D
在醒着的行为小鼠中的voctv,以测试人工耳蜗放大是否通过大脑状态调节
内侧橄榄石传出(MOC)系统通过改变OHC力的产生。在一起,这些数据将是
解释以检验我们的假设。如果我们的假设是真实的,在
Corti的器官对于产生哺乳动物耳蜗和大脑的灵敏度和尖锐调整是必要的
状态通过MOC传出系统调节人工耳蜗。
项目成果
期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hair cell force generation does not amplify or tune vibrations within the chicken basilar papilla.
- DOI:10.1038/ncomms13133
- 发表时间:2016-10-31
- 期刊:
- 影响因子:16.6
- 作者:Xia, Anping;Liu, Xiaofang;Raphael, Patrick D.;Applegate, Brian E.;Oghalai, John S.
- 通讯作者:Oghalai, John S.
Rules for Successful Leadership in Otolaryngology-Head and Neck Surgery.
耳鼻喉头颈外科成功领导规则。
- DOI:10.1002/lary.30052
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Oghalai,JohnS
- 通讯作者:Oghalai,JohnS
Controlled ultrasound tissue erosion.
受控超声组织侵蚀。
- DOI:10.1109/tuffc.2004.1308731
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:Xu,Zhen;Ludomirsky,Achiau;Eun,LucyY;Hall,TimothyL;Tran,BinhC;Fowlkes,JBrian;Cain,CharlesA
- 通讯作者:Cain,CharlesA
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John S Oghalai其他文献
John S Oghalai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John S Oghalai', 18)}}的其他基金
Otolaryngology Clinician-Scientist Training Program
耳鼻喉科临床医生科学家培训计划
- 批准号:
10649406 - 财政年份:2022
- 资助金额:
$ 62.33万 - 项目类别:
Otolaryngology Clinician-Scientist Training Program
耳鼻喉科临床医生科学家培训计划
- 批准号:
10291583 - 财政年份:2022
- 资助金额:
$ 62.33万 - 项目类别:
Mechanisms of cochlear synaptopathy after noise or blast trauma
噪音或爆炸创伤后耳蜗突触病的机制
- 批准号:
10307056 - 财政年份:2020
- 资助金额:
$ 62.33万 - 项目类别:
Mechanisms of cochlear synaptopathy after noise or blast trauma
噪音或爆炸创伤后耳蜗突触病的机制
- 批准号:
10053337 - 财政年份:2020
- 资助金额:
$ 62.33万 - 项目类别:
Mechanisms of cochlear synaptopathy after noise or blast trauma
噪声或爆炸损伤后耳蜗突触病的机制
- 批准号:
10540702 - 财政年份:2020
- 资助金额:
$ 62.33万 - 项目类别:
Mechanisms of cochlear synaptopathy after noise or blast trauma
噪声或爆炸损伤后耳蜗突触病的机制
- 批准号:
9887606 - 财政年份:2020
- 资助金额:
$ 62.33万 - 项目类别:
Optical coherence tomography for 3D measures of cochlear mechanics in vivo
用于体内耳蜗力学 3D 测量的光学相干断层扫描
- 批准号:
9454168 - 财政年份:2015
- 资助金额:
$ 62.33万 - 项目类别:
相似国自然基金
聚合物纤维膜的声至内源摩擦自充电效应及对空气过滤性能的影响
- 批准号:52373103
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
空气污染与栖息地变化对生物多样性的影响:基于生态学大数据的经济研究
- 批准号:72303006
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
中国PM2.5城郊差异时空演变及其影响机制研究
- 批准号:42301093
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
农村固体燃料排放影响室内空气质量的过程和时空特征
- 批准号:42371077
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
空气颗粒物通过调控白血病抑制因子参与影响IgA肾病进展的作用与机制研究
- 批准号:82370711
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
相似海外基金
Early Life Determinants of Child Health: A New Denver-Based Cohort
儿童健康的早期决定因素:丹佛的一个新队列
- 批准号:
10745631 - 财政年份:2023
- 资助金额:
$ 62.33万 - 项目类别:
Mitigation of ventilation-based resuspension and spread of airborne viruses in nosocomial and healthcare settings
减轻医院和医疗机构中基于通气的空气传播病毒的再悬浮和传播
- 批准号:
10668064 - 财政年份:2023
- 资助金额:
$ 62.33万 - 项目类别:
Extending Reach, Accuracy, and Therapeutic Capabilities: A Soft Robot for Peripheral Early-Stage Lung Cancer
扩大范围、准确性和治疗能力:用于周围早期肺癌的软机器人
- 批准号:
10637462 - 财政年份:2023
- 资助金额:
$ 62.33万 - 项目类别:
Three-dimensional Confocal Microscopy Visualization and AFM-IR Chemical Mapping of Lung Surfactant Monolayer Collapse Morphologies
肺表面活性剂单层塌陷形态的三维共焦显微镜可视化和 AFM-IR 化学图谱
- 批准号:
10751972 - 财政年份:2023
- 资助金额:
$ 62.33万 - 项目类别:
3D Printed Microfluidic Artificial Lung for Veteran Rehabilitation
用于退伍军人康复的 3D 打印微流控人工肺
- 批准号:
10629531 - 财政年份:2023
- 资助金额:
$ 62.33万 - 项目类别: