Mitigation of ventilation-based resuspension and spread of airborne viruses in nosocomial and healthcare settings
减轻医院和医疗机构中基于通气的空气传播病毒的再悬浮和传播
基本信息
- 批准号:10668064
- 负责人:
- 金额:$ 18.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-26 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:2019-nCoV3-DimensionalAddressAerosolsAffectAirAir MovementsAnimalsAreaCattleCell Culture TechniquesCharacteristicsChinaCirculationCollectionCommunicable DiseasesComputer ModelsCoronavirusDataDepositionDevelopmentDiseaseEffectivenessEngineeringEnvironmentEnvironmental ImpactEnvironmental Risk FactorExperimental ModelsExposure toGoalsGuidelinesHealth care facilityHospitalsHourHumanHumidityIncidenceIntakeInterferometryKnowledgeLiquid substanceLocationMeasurementMeasuresMechanicsMethodsModelingMolecularMolecular ComputationsMonitorOrganismPathway interactionsPatternPersonsPlayPolymerase Chain ReactionProcessPropertyResearchRoleRouteSamplingScientistSourceStreamSurfaceSuspensionsSystemTemperatureTestingViralVirionVirusVisualizationaerosolizedair samplingbetacoronavirusbuilt environmentdesigndisease transmissionexhaustfield studyhealth care settingshuman coronavirusimprovedinnovationmicroorganismmolecular dynamicsnovelpandemic diseaseparticlepathogenprogramssimulationtransmission processventilationviral transmission
项目摘要
Project Summary/Abstract
Viral transmission from an infected person or an animal to a new host can occur by direct or indirect routes.
During indirect transmission, contaminated surfaces can play an important role. Although there are a number of
methods for disease transmission in healthcare facilities, aerial transmission is often considered an important
route for many organisms. The aerial path followed by pathogens from the source to recipients or surfaces and
their viability upon impaction is affected by many factors, including room air exchange rates and air properties
that may further challenge aerosolized bioparticles, including viruses. As ventilation systems are practically
ubiquitous in the build environment, the effect of air properties on the infectivity and transport of aerosolized
viruses is an important topic for study to reduce the spread of infectious viral particles.
The proposed project is the first known comprehensive study on the impact of environmental conditions
including temperature, humidity, and air velocity on the droplet size, spread, and
deposition/resuspension of airborne viruses. The optimization of environmental conditions that lead to
improved ventilation designs or mitigation strategies could significantly reduce the entrainment and spread of
viable infectious viruses in the built environment. The PIs' have previously shown that a combined modeling and
sampling approach is successful to mitigate transport of airborne infectious microorganisms in a ventilated facility
The goal of this proposal is to understand the effect of environmental conditions on the transmission, deposition
and resuspension of aerosolized virus particles and provide realistic measures to reduce their spread in the
ventilation airflow in nosocomial and healthcare settings. The proposed goal will be achieved by combining
betacoronavirus aerosol collection with biolayer interferometry, molecular dynamics and computational airflow
modeling in model experiments and field testing. The research plan is based on three fundamental questions
about 1) the effect of environmental conditions and surface characteristics on the size distribution, deposition,
and resuspension of virus aerosols using biolayer interferometry, molecular dynamics modeling and
computational flow simulation to visualize the airflow patterns in a 3 scale model hospital room. Elucidating the
relationship between viable virus deposition and resuspension is the key for developing means to reduce
transmission of viruses through airborne exposure; 2) using bioaerosol collectors to determine the rate and
distance aerosolized viruses can spread in different environmental conditions analyzed by cell culture and
quantitative polymerase chain reaction (qPCR); and 3) how mitigation efforts based on optimized ventilation can
be applied to hospital settings. This innovative project will help develop and implement interdisciplinary
ventilation design guidelines to educate scientists and engineers about bioaerosol transport and environmental
effects on the spread of viruses in an effort to improve understanding of infectious disease considerations in
design, management, and monitoring of healthcare facilities and other built environment.
项目摘要/摘要
可以通过直接或间接路线发生从感染者或动物到新宿主的病毒传播。
在间接传输期间,受污染的表面可以发挥重要作用。虽然有很多
医疗设施中疾病传播的方法,空中传播通常被认为是重要的
许多生物的途径。从源到接受者或表面的病原体,沿航空路径和
它们对碰撞的生存能力受到许多因素的影响,包括房间空气汇率和空气财产
这可能会进一步挑战包括病毒在内的雾化生物颗粒。由于通风系统实际上是
在构建环境中无处不在,空气特性对雾化的感染和运输的影响
病毒是研究减少传染性病毒颗粒传播的重要主题。
拟议的项目是关于环境条件影响的首次已知的综合研究
包括温度,湿度和液滴尺寸,扩散和空气速度
空气传播病毒的沉积/重悬。导致环境条件的优化
改进的通风设计或缓解策略可能会大大减少夹带和传播
在建筑环境中可行的传染病。 PIS以前已经表明了合并的建模和
抽样方法成功地减轻了通风设施中空气传染性微生物的运输
该提案的目的是了解环境条件对传播的影响
并重新悬浮病毒颗粒,并提供逼真的措施,以减少其在
医院和医疗保健环境中的通风气流。提出的目标将通过结合实现
Betacoronavirus气溶胶收集,带有生物层干涉法,分子动力学和计算气流
在模型实验和现场测试中进行建模。研究计划基于三个基本问题
大约1)环境条件和表面特征对尺寸分布,沉积,
并使用生物层干涉法,分子动力学建模和
计算流量模拟可视化3级模型医院中的气流模式。阐明
可行的病毒沉积与重悬于的重悬是开发减少手段的关键
通过空中暴露传播病毒; 2)使用Bioaerosol收集器来确定速率和
距离雾化病毒可以在细胞培养和分析的不同环境条件下扩散
定量聚合酶链反应(QPCR); 3)基于优化通风的缓解工作如何
应用于医院设置。这个创新的项目将有助于开发和实施跨学科
通风设计指南,以教育科学家和工程师有关生物美洲的运输和环境
对病毒传播的影响,以提高对传染病考虑因素的理解
设计,管理和监视医疗机构和其他建筑环境。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maria Dobozi King其他文献
Maria Dobozi King的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
单一取向CsPbBr3一维光波导阵列在异质半导体低维结构上的面内集成及其在光电互联中的应用研究
- 批准号:62374057
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
磁场-电场协同作用下LaAlO3/SrTiO3界面二维电子气的圆偏振光伏效应研究
- 批准号:12304222
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Sirtuin 3维持平滑肌细胞线粒体呼吸功能抑制A型主动脉夹层发病的作用和机制
- 批准号:82300538
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
应变调控二维磁性材料VX3的磁光拉曼研究
- 批准号:12304042
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
cohesin与SYCP3协同调控精母细胞减数分裂联会复合体形成过程中染色质三维结构建立的分子机制
- 批准号:32370574
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Potential role of skin in SARS-CoV-2 infection
皮肤在 SARS-CoV-2 感染中的潜在作用
- 批准号:
10593622 - 财政年份:2023
- 资助金额:
$ 18.09万 - 项目类别:
Dissecting the drivers of persistent SARS-CoV-2 infections
剖析 SARS-CoV-2 持续感染的驱动因素
- 批准号:
10736007 - 财政年份:2023
- 资助金额:
$ 18.09万 - 项目类别:
Immune-epithelial progenitor interactions drive age-associated dysplastic lung repair post viral pneumonia
免疫上皮祖细胞相互作用驱动病毒性肺炎后与年龄相关的发育不良肺修复
- 批准号:
10751699 - 财政年份:2023
- 资助金额:
$ 18.09万 - 项目类别:
Targeting macrophages to reduce the combined injury effects of radiation and virus exposure
靶向巨噬细胞以减少辐射和病毒暴露的综合损伤效应
- 批准号:
10452344 - 财政年份:2022
- 资助金额:
$ 18.09万 - 项目类别:
Generative neural networks for structure-based antibody design
用于基于结构的抗体设计的生成神经网络
- 批准号:
10705666 - 财政年份:2022
- 资助金额:
$ 18.09万 - 项目类别: