Generative neural networks for structure-based antibody design

用于基于结构的抗体设计的生成神经网络

基本信息

  • 批准号:
    10705666
  • 负责人:
  • 金额:
    $ 32.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-17 至 2027-08-31
  • 项目状态:
    未结题

项目摘要

PROGRAM SUMMARY/ABSTRACT As a molecular detection platform, antibodies have growing importance in modern medical technology, ranging from diagnostic tests, to imaging, to therapeutics. The current market size for antibodies and their related products is estimated to be around $200 billion USD. The growing need for antibodies with customized specificity provides a rich environment for engineering efforts. Computational protein design has seen rapid progress in recent years. Many methods have been developed to address antibody engineering needs. Researchers have hoped that, through modeling and design, the cost for antibody development and improvements can be reduced and the pace for creating new targeting molecules can be expedited. In recent years, the experimental pipeline has been streamlined, but even so, extensive libraries and screen campaigns are usually required to get an initial binding signal. A major advancement would be to directly design a binder from scratch, providing a signal for potential optimization by artificial evolution. Current computational methods, however, have not taken a leading role due to a number of shortcomings with the current modeling approach. We have extensive expertise in protein design and have pioneered the use of generative neural network models for protein structures in recent years. We have observed several key advantages in neural network approaches over existing methods: namely, their ability to make inferences, interpolate, incorporate topological information, and accelerate sampling. These advantages can be developed independently or used in conjunction with existing methods, and they can significantly boost the performance of protein design. This project aims at leveraging several new advances we have developed to date to inspire new strategies in response to the challenges in antibody engineering, or AI-based protein design in general. We will develop new tools and design pipelines for expanding the specificities for multi- specific antibodies and customizing epitope-specific antibodies (using snake venoms and CXCR4 as targets). This project will deliver both computational methods and constructs that can be deployed in clinical settings. The results from this research will be highly impactful.
项目概要/摘要 抗体作为分子检测平台,在现代医学中的重要性日益凸显 技术,从诊断测试到成像,再到治疗。目前的市场规模为 抗体及其相关产品估计价值约2000亿美元。不断成长的 对具有定制特异性的抗体的需求为工程工作提供了丰富的环境。 近年来,计算蛋白质设计取得了快速进展。已经有很多方法 为满足抗体工程需求而开发。研究人员希望通过 建模和设计,可以降低抗体开发和改进的成本 可以加快创造新靶向分子的步伐。近年来,实验 管道已被简化,但即便如此,广泛的图书馆和屏幕活动通常是 需要获得初始结合信号。一个重大进步是直接设计活页夹 从头开始,为人工进化的潜在优化提供信号。当前的 然而,由于许多缺点,计算方法尚未发挥主导作用 使用当前的建模方法。我们在蛋白质设计方面拥有丰富的专业知识,并且 近年来率先使用生成神经网络模型来研究蛋白质结构。我们 与现有方法相比,我们观察到神经网络方法的几个关键优势: 即,它们进行推理、插值、合并拓扑信息的能力,以及 加速采样。这些优点可以单独开发,也可以结合使用 与现有方法相结合,它们可以显着提高蛋白质设计的性能。这 该项目旨在利用我们迄今为止开发的几项新进展来激发新的 应对抗体工程或基于人工智能的蛋白质设计挑战的策略 一般的。我们将开发新的工具和设计管道,以扩展多方面的特殊性 特异性抗体和定制表位特异性抗体(使用蛇毒和 CXCR4 作为目标)。该项目将提供可用于计算的方法和结构 部署在临床环境中。这项研究的结果将具有很大的影响力。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Possu Huang其他文献

Possu Huang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Possu Huang', 18)}}的其他基金

Generative neural networks for structure-based antibody design
用于基于结构的抗体设计的生成神经网络
  • 批准号:
    10505034
  • 财政年份:
    2022
  • 资助金额:
    $ 32.95万
  • 项目类别:
Generative neural networks for structure-based antibody design
用于基于结构的抗体设计的生成神经网络
  • 批准号:
    10799445
  • 财政年份:
    2022
  • 资助金额:
    $ 32.95万
  • 项目类别:

相似国自然基金

三维有序大/介孔稀土氧化物(La2O3和CeO2)负载Ru催化剂用于氨分解性能研究
  • 批准号:
    52361040
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
单一取向CsPbBr3一维光波导阵列在异质半导体低维结构上的面内集成及其在光电互联中的应用研究
  • 批准号:
    62374057
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
磁性二维Fe3GeTe2材料的液相剥离及其超宽带光电探测性能研究
  • 批准号:
    52301299
  • 批准年份:
    2023
  • 资助金额:
    20 万元
  • 项目类别:
    青年科学基金项目
Sirtuin 3维持平滑肌细胞线粒体呼吸功能抑制A型主动脉夹层发病的作用和机制
  • 批准号:
    82300538
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
应变调控二维磁性材料VX3的磁光拉曼研究
  • 批准号:
    12304042
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Longitudinal Imaging of Maternal Exercise and Exerkine Effects on Offspring Metabolism
母亲运动的纵向成像和 Exerkine 对后代代谢的影响
  • 批准号:
    10726363
  • 财政年份:
    2023
  • 资助金额:
    $ 32.95万
  • 项目类别:
Generative neural networks for structure-based antibody design
用于基于结构的抗体设计的生成神经网络
  • 批准号:
    10505034
  • 财政年份:
    2022
  • 资助金额:
    $ 32.95万
  • 项目类别:
Targeting ovarian cancer spheroid formation and metabolic adaptation by APJ inhibition
通过 APJ 抑制靶向卵巢癌球体形成和代谢适应
  • 批准号:
    10366717
  • 财政年份:
    2021
  • 资助金额:
    $ 32.95万
  • 项目类别:
Targeting ovarian cancer spheroid formation and metabolic adaptation by APJ inhibition
通过 APJ 抑制靶向卵巢癌球体形成和代谢适应
  • 批准号:
    10528490
  • 财政年份:
    2021
  • 资助金额:
    $ 32.95万
  • 项目类别:
Cell fate choices by Tbx1 in forming the mammalian heart
Tbx1 在形成哺乳动物心脏过程中的细胞命运选择
  • 批准号:
    10615781
  • 财政年份:
    2020
  • 资助金额:
    $ 32.95万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了