Robotically-actuated, low-noise, concurrent TMS-EEG-fMRI system
机器人驱动、低噪声、并发 TMS-EEG-fMRI 系统
基本信息
- 批准号:10614611
- 负责人:
- 金额:$ 161.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:Acoustic StimulationAddressAlgorithmsAnatomyAuditoryBluetoothBrainBrain MappingBrain imagingCephalicClinicalComputer softwareCustomDataDevelopmentDiseaseEffectivenessElectrodesElectroencephalographyElectromagneticsElectronicsEvaluationFeedbackFoundationsFunctional Magnetic Resonance ImagingFundingHeadHealthHumanImageMagnetic Resonance ImagingMapsMeasuresMethodsMorphologic artifactsNatureNeurosciencesNeurosciences ResearchNoisePatternPerformancePersonsPhasePositioning AttributePrintingResearchResearch PersonnelResolutionRobotRoboticsSafetySignal TransductionSpeedSynapsesSystemSystems IntegrationTechniquesTechnologyTherapeutic InterventionThinnessTimeTranscranial magnetic stimulationUnited States National Institutes of HealthWorkauditory pathwayblood oxygen level dependentdata communicationdesignenergy efficiencyexperienceflexibilityflexible electronicsimprovedin vivoindustry partnerinventionmagnetic fieldmagnetic resonance imaging/electroencephalographyminiaturizemultimodalityneuralneural circuitneuroregulationnew technologynoveloperationresponserobotic systemsoundspatiotemporaltemporal measurementtoolwireless
项目摘要
Abstract
The ability to noninvasively modulate and image the brain with spatial and temporal precision is highly desirable
for understanding brain circuits in health and disease. Transcranial magnetic stimulation (TMS) is a method for
stimulating the superficial cortex with high spatial and temporal precision, and its effects can be aimed at deeper
targets by leveraging the trans-synaptic connectivity of brain circuits. Functional magnetic resonance imaging
(fMRI) has high spatial resolution but limited temporal precision, and the opposite holds for
electroencephalography (EEG). These three noninvasive electromagnetic methods have recently been
combined to achieve high spatial and temporal precision of concurrent modulation and imaging of the brain. This
approach, however, has various significant technical limitations, including mutual electromagnetic artifacts
decreasing the signal-to-noise ratio and delaying the acquisition of imaging/EEG data, TMS acoustic noise co-
activating auditory pathways, and the inability to adaptively adjust the TMS coil position within the MRI scanner
for optimal targeting. The overarching objective of this project is to address these limitations by developing and
integrating an array of novel technologies. We will develop a compact, energy efficient, quiet, as well as MRI-
and EEG-compatible TMS coil. The TMS coil will be actuated with a custom MRI-compatible robotic system,
allowing adaptive optimization of the coil position and orientation based on imaging feedback. The neural circuit
responses to the stimulation will be imaged with a newly developed a flexible, head-conforming array of MRI
coils combining local magnetic field shimming and RF receiving to achieve high signal-to-noise ratio and fast
image acquisition. The brain activity will be simultaneously recorded both before and after TMS with high
temporal resolution and low noise using a novel wireless EEG system. To meet the technical challenges of
creating such as a system operating inside MRI scanners, our team has developed several breakthrough
technologies that will work synergistically to reduce or eliminate couplings between system components and
enhance the stimulation precision and imaging speed and sensitivity. Once developed, the robotically-actuated
TMS-EEG-fMRI system will enable systematic interrogation of human brain circuits inside an MRI scanner with
spatial and temporal flexibility and precision that are impossible to achieve with current technology. The
integrated system will be easy-to-use, and platform-agonistic thus having the potential for immediate and
scalable impact. First-time adaptive optimization of the TMS coil placement in the MRI scanner will be
demonstrated for brain-state-triggered engagement of a deep brain target. In summary, the proposed robotically-
actuated TMS-EEG-fMRI system will enable modulation and imaging of brain circuits with enhanced anatomical
and functional precision that can lead to advances in neuroscience research and therapeutic interventions.
抽象的
非常需要以空间和时间精度非侵入性地调节大脑并对其进行成像的能力
用于了解健康和疾病中的大脑回路。经颅磁刺激(TMS)是一种方法
以高时空精度刺激浅表皮层,其效果可针对更深层次
通过利用大脑回路的跨突触连接来实现目标。功能磁共振成像
(fMRI)具有高空间分辨率,但时间精度有限,反之亦然
脑电图(EEG)。这三种非侵入性电磁方法最近被
结合起来,实现大脑并发调制和成像的高空间和时间精度。这
然而,该方法具有各种重大的技术限制,包括相互电磁伪影
降低信噪比并延迟成像/脑电图数据的采集,TMS 声学噪声共同
激活听觉通路,并且无法自适应调整 MRI 扫描仪内的 TMS 线圈位置
以获得最佳目标。该项目的总体目标是通过开发和解决这些限制
整合一系列新技术。我们将开发一种紧凑、节能、安静、以及 MRI-
和 EEG 兼容的 TMS 线圈。 TMS 线圈将由定制的 MRI 兼容机器人系统驱动,
允许基于成像反馈自适应优化线圈位置和方向。神经回路
对刺激的反应将通过新开发的灵活的、头部一致的 MRI 阵列进行成像
线圈结合局部磁场匀场和射频接收,实现高信噪比和快速
图像采集。将同时记录 TMS 前后的大脑活动,并具有高
使用新型无线脑电图系统的时间分辨率和低噪声。为了应对技术挑战
在创建诸如 MRI 扫描仪内部运行的系统之类的过程中,我们的团队取得了多项突破性成果
协同工作以减少或消除系统组件和系统之间的耦合的技术
提高刺激精度以及成像速度和灵敏度。一旦开发出来,机器人驱动的
TMS-EEG-fMRI 系统将能够对 MRI 扫描仪内的人脑回路进行系统询问
空间和时间的灵活性和精度是当前技术无法实现的。这
集成系统将易于使用且具有平台竞争性,因此有可能立即和
可扩展的影响。 MRI 扫描仪中 TMS 线圈放置的首次自适应优化将
证明了大脑状态触发的深部大脑目标的参与。总之,所提出的机器人
驱动的 TMS-EEG-fMRI 系统将能够通过增强的解剖学功能对脑回路进行调制和成像
和功能精确性可以促进神经科学研究和治疗干预的进步。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Detection of motor-evoked potentials below the noise floor: rethinking the motor stimulation threshold.
- DOI:10.1088/1741-2552/ac7dfc
- 发表时间:2022-10-21
- 期刊:
- 影响因子:4
- 作者:Li, Zhongxi;Peterchev, Angel, V;Rothwell, John C.;Goetz, Stefan M.
- 通讯作者:Goetz, Stefan M.
Automatic Neurocranial Landmarks Detection from Visible Facial Landmarks Leveraging 3D Head Priors.
利用 3D 头部先验从可见面部标志自动检测神经颅标志。
- DOI:10.1007/978-3-031-45249-9_2
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Schlesinger,Oded;Kundu,Raj;Goetz,Stefan;Sapiro,Guillermo;Peterchev,AngelV;DiMartino,JMatias
- 通讯作者:DiMartino,JMatias
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CHUNLEI LIU其他文献
CHUNLEI LIU的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CHUNLEI LIU', 18)}}的其他基金
Genetically-Encoded, Non-Invasive and Wireless Modulation of Calcium Dynamics in Astrocytes With Spatiotemporal Precision and Depth
具有时空精度和深度的星形胶质细胞钙动态的基因编码、非侵入性无线调节
- 批准号:
10562265 - 财政年份:2023
- 资助金额:
$ 161.02万 - 项目类别:
Robotically-actuated, low-noise, concurrent TMS-EEG-fMRI system
机器人驱动、低噪声、并发 TMS-EEG-fMRI 系统
- 批准号:
10435560 - 财政年份:2021
- 资助金额:
$ 161.02万 - 项目类别:
Robotically-actuated, low-noise, concurrent TMS-EEG-fMRI system
机器人驱动、低噪声、并发 TMS-EEG-fMRI 系统
- 批准号:
10286708 - 财政年份:2021
- 资助金额:
$ 161.02万 - 项目类别:
Interrogating Biophysical Mechanisms of Magnetogenetic Cell Stimulation at Radio Frequencies
探究射频刺激磁发生细胞的生物物理机制
- 批准号:
10132415 - 财政年份:2019
- 资助金额:
$ 161.02万 - 项目类别:
Interrogating Biophysical Mechanisms of Magnetogenetic Cell Stimulation at Radio Frequencies
探究射频刺激磁发生细胞的生物物理机制
- 批准号:
10368059 - 财政年份:2019
- 资助金额:
$ 161.02万 - 项目类别:
Interrogating Biophysical Mechanisms of Magnetogenetic Cell Stimulation at Radio Frequencies
探究射频刺激磁发生细胞的生物物理机制
- 批准号:
10596467 - 财政年份:2019
- 资助金额:
$ 161.02万 - 项目类别:
High-resolution in vivo and non-invasive imaging of myocardial fibers
心肌纤维的高分辨率体内和非侵入性成像
- 批准号:
8843034 - 财政年份:2014
- 资助金额:
$ 161.02万 - 项目类别:
High-resolution in vivo and non-invasive imaging of myocardial fibers
心肌纤维的高分辨率体内和非侵入性成像
- 批准号:
8678299 - 财政年份:2014
- 资助金额:
$ 161.02万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Supplement: Active and Nonlinear Models for Cochlear Mechanics
补充:耳蜗力学的主动和非线性模型
- 批准号:
10405710 - 财政年份:2021
- 资助金额:
$ 161.02万 - 项目类别:
Robotically-actuated, low-noise, concurrent TMS-EEG-fMRI system
机器人驱动、低噪声、并发 TMS-EEG-fMRI 系统
- 批准号:
10286708 - 财政年份:2021
- 资助金额:
$ 161.02万 - 项目类别:
Robotically-actuated, low-noise, concurrent TMS-EEG-fMRI system
机器人驱动、低噪声、并发 TMS-EEG-fMRI 系统
- 批准号:
10435560 - 财政年份:2021
- 资助金额:
$ 161.02万 - 项目类别:
Clinical Utility of Residual Hearing in the Cochlear Implant Ear
人工耳蜗植入耳残余听力的临床应用
- 批准号:
10045323 - 财政年份:2020
- 资助金额:
$ 161.02万 - 项目类别:
Clinical Utility of Residual Hearing in the Cochlear Implant Ear
人工耳蜗植入耳残余听力的临床应用
- 批准号:
10673177 - 财政年份:2020
- 资助金额:
$ 161.02万 - 项目类别: