Interrogating Biophysical Mechanisms of Magnetogenetic Cell Stimulation at Radio Frequencies
探究射频刺激磁发生细胞的生物物理机制
基本信息
- 批准号:10596467
- 负责人:
- 金额:$ 51.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:Animal ModelAreaBRAIN initiativeBindingBiophysical ProcessBiophysicsBrainCalciumCationsCell LineCell membraneCellsCellular Metabolic ProcessCentral Nervous SystemCharacteristicsChemicalsChimeric ProteinsComplexConflict (Psychology)DNADependenceElectric StimulationElectromagnetic FieldsElectromagneticsEnergy TransferFamilyFerritinFrequenciesFutureGoalsHeatingHigh temperature of physical objectIn SituIn VitroIon ChannelIronKininogensLawsLipid PeroxidationLipidsMagnetic nanoparticlesMagnetismMeasuresMembraneMethodsModelingNatureNeurobiologyNeuronsOperative Surgical ProceduresPenetrationPermeabilityPhysicsPhysiologicalProcessProteinsProtocols documentationReportingResearchSafetySignal PathwaySpecific qualifier valueSpecificityStimulusSystemTRPV channelTRPV1 geneTechniquesTechnologyTemperatureThermodynamicsTissuesVanilloidcell typedesignexperimental studyimprovedin vivomagnetic fieldmechanical forceneural stimulationnoveloptogeneticsparticleperoxidationradio frequencyreceptorresponseuptakevoltagewireless
项目摘要
Abstract
Magnetogenetics is a recently proposed method for stimulating cells using electromagnetic fields. In one
approach, radio-frequency (RF) electromagnetic fields are applied to stimulate membrane channel proteins such
as TRPV1 and TRPV4 that are attached to ferritins. The concept is highly attractive as it enables wireless neural
stimulation without limitation on penetration depth or the requirement of invasive surgeries. If successful, RF-
based magnetogenetics can provide a non-invasive approach for large-scale neural stimulation that can reach
anywhere in the brain and achieve cellular specificity. This capability overcomes a significant limitation in other
techniques such as electrical stimulation and optogenetics where stimulation is spatially restricted. However,
while there have been several independent reports of experimental evidences for magnetogenetic effects using
RF waves, the physical and neurobiological underpinnings of such effects remain unclear and controversial.
Reported experiments have been conducted only in a few selected frequencies and amplitudes and the
responses were mostly measured indirectly based on downstream physiological effects. The objective of the
proposed project is to systematically characterize, model and validate the neurobiological and cellular responses
upon RF stimulation in neurons expressing ferritin-attached TRPV1 and TRPV4 channels. Specifically, we aim
to characterize these magnetogenetic channels of their: 1) neuronal responses to electrical and chemical stimuli
and to RF stimulation over a wide range of frequencies and amplitudes; 2) temperature responses to RF
stimulation at the protein, cytoplasmic membrane and cellular level; 3) cellular metabolic processes upon RF
stimulation. We will systematically evaluate two novel working hypotheses of the underlying mechanisms. If
successful, the project will characterize the cellular responses to RF stimulation, quantify activation thresholds
and safety limits, establish standard protocols and elucidate the biophysical underpinnings of this reported RF-
based magnetogenetic phenomenon. It would resolve a fundamental challenge in advancing this technology and
guide a more rationale design and improvement of the techniques. Understanding the mechanisms of the initial
reports of magnetogenetics would be a significant addition to the present ensemble of neuro-stimulation
technologies such as electrical stimulation and optogenetics and contribute to one central goal of the BRAIN
Initiative that is to develop new and improved perturbation technologies suitable for controlling specified cell
types and circuits to modulate function in the central nervous system.
抽象的
磁化遗传学是一种使用电磁场刺激细胞的最近提出的方法。一个
方法,射频(RF)电磁场用于刺激膜通道蛋白这样
作为连接到铁蛋白的TRPV1和TRPV4。该概念非常有吸引力,因为它可以实现无线神经
刺激不限制穿透深度或侵入性手术的要求。如果成功,RF-
基于磁化遗传学可以为大规模神经刺激提供一种非侵入性方法
大脑中的任何地方并达到细胞特异性。这种能力克服了其他方面的重大限制
刺激受到空间限制的技术,例如电刺激和光遗传学。然而,
虽然有几个独立的报道,关于使用的实验证据
RF波,这种作用的物理和神经生物学基础仍然不清楚和有争议。
报告的实验仅在一些选定的频率和振幅中进行,并且
反应主要是根据下游生理效应间接测量的。目的
拟议的项目是系统地表征,建模和验证神经生物学和细胞反应
在表达铁蛋白连接的TRPV1和TRPV4通道的神经元中的RF刺激后。具体来说,我们的目标
为了表征它们的这些磁遗传通道:1)对电和化学刺激的神经元反应
并在各种频率和振幅上刺激RF刺激; 2)对RF的温度响应
刺激蛋白质,细胞质膜和细胞水平; 3)RF上的细胞代谢过程
刺激。我们将系统地评估两个基本机制的新型工作假设。如果
成功,该项目将表征对RF刺激的细胞反应,量化激活阈值
和安全限制,建立标准方案并阐明该RF-的生物物理基础
基于磁化现象。它将解决进步这项技术的基本挑战和
指导更多的理由设计和技术的改进。了解最初的机制
磁化遗传学的报道将是当前神经刺激合奏的重要补充
电刺激和光遗传学等技术,并为大脑的一个中心目标做出了贡献
开发新的和改进的扰动技术的计划,适合控制指定的单元
在中枢神经系统中调节功能的类型和电路。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Timing of Excitatory and Inhibitory Synapses Rules the Cerebellar Computation.
兴奋性和抑制性突触的时序决定小脑计算。
- DOI:10.1523/jneurosci.1946-23.2024
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Morales-Weil,Koyam
- 通讯作者:Morales-Weil,Koyam
Evaluating methods and protocols of ferritin-based magnetogenetics.
- DOI:10.1016/j.isci.2021.103094
- 发表时间:2021-10-22
- 期刊:
- 影响因子:5.8
- 作者:Hernández-Morales M;Han V;Kramer RH;Liu C
- 通讯作者:Liu C
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CHUNLEI LIU其他文献
CHUNLEI LIU的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CHUNLEI LIU', 18)}}的其他基金
Genetically-Encoded, Non-Invasive and Wireless Modulation of Calcium Dynamics in Astrocytes With Spatiotemporal Precision and Depth
具有时空精度和深度的星形胶质细胞钙动态的基因编码、非侵入性无线调节
- 批准号:
10562265 - 财政年份:2023
- 资助金额:
$ 51.03万 - 项目类别:
Robotically-actuated, low-noise, concurrent TMS-EEG-fMRI system
机器人驱动、低噪声、并发 TMS-EEG-fMRI 系统
- 批准号:
10435560 - 财政年份:2021
- 资助金额:
$ 51.03万 - 项目类别:
Robotically-actuated, low-noise, concurrent TMS-EEG-fMRI system
机器人驱动、低噪声、并发 TMS-EEG-fMRI 系统
- 批准号:
10286708 - 财政年份:2021
- 资助金额:
$ 51.03万 - 项目类别:
Robotically-actuated, low-noise, concurrent TMS-EEG-fMRI system
机器人驱动、低噪声、并发 TMS-EEG-fMRI 系统
- 批准号:
10614611 - 财政年份:2021
- 资助金额:
$ 51.03万 - 项目类别:
Interrogating Biophysical Mechanisms of Magnetogenetic Cell Stimulation at Radio Frequencies
探究射频刺激磁发生细胞的生物物理机制
- 批准号:
10132415 - 财政年份:2019
- 资助金额:
$ 51.03万 - 项目类别:
Interrogating Biophysical Mechanisms of Magnetogenetic Cell Stimulation at Radio Frequencies
探究射频刺激磁发生细胞的生物物理机制
- 批准号:
10368059 - 财政年份:2019
- 资助金额:
$ 51.03万 - 项目类别:
High-resolution in vivo and non-invasive imaging of myocardial fibers
心肌纤维的高分辨率体内和非侵入性成像
- 批准号:
8843034 - 财政年份:2014
- 资助金额:
$ 51.03万 - 项目类别:
High-resolution in vivo and non-invasive imaging of myocardial fibers
心肌纤维的高分辨率体内和非侵入性成像
- 批准号:
8678299 - 财政年份:2014
- 资助金额:
$ 51.03万 - 项目类别:
相似国自然基金
跨区域调水工程与区域经济增长:效应测度、机制探究与政策建议
- 批准号:72373114
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
农产品区域公用品牌地方政府干预机制与政策优化研究
- 批准号:72373068
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
新型城镇化与区域协调发展的机制与治理体系研究
- 批准号:72334006
- 批准年份:2023
- 资助金额:167 万元
- 项目类别:重点项目
我国西南地区节点城市在次区域跨国城市网络中的地位、功能和能级提升研究
- 批准号:72364037
- 批准年份:2023
- 资助金额:28 万元
- 项目类别:地区科学基金项目
多时序CT联合多区域数字病理早期预测胃癌新辅助化疗抵抗的研究
- 批准号:82360345
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Capturing the neural signature of the paraventricular thalamus that underlies individual variability in cue-motivated behavior
捕捉室旁丘脑的神经信号,该信号是线索驱动行为个体差异的基础
- 批准号:
10715723 - 财政年份:2023
- 资助金额:
$ 51.03万 - 项目类别:
Implantable Microarray Probe for Real-Time Glutamate and GABA Detection
用于实时谷氨酸和 GABA 检测的植入式微阵列探针
- 批准号:
10761486 - 财政年份:2023
- 资助金额:
$ 51.03万 - 项目类别:
Dissemination of the Human Neocortical Neurosolver (HNN) software for circuit level interpretation of human MEG/EEG
传播用于人类 MEG/EEG 电路级解释的人类新皮质神经解算器 (HNN) 软件
- 批准号:
10726032 - 财政年份:2023
- 资助金额:
$ 51.03万 - 项目类别:
Single cell determinants of brain in the context of viral persistence in SIV/cART/cocaine non-human primates
SIV/cART/可卡因非人灵长类动物病毒持续存在时大脑的单细胞决定因素
- 批准号:
10683001 - 财政年份:2023
- 资助金额:
$ 51.03万 - 项目类别: