Implantable Microarray Probe for Real-Time Glutamate and GABA Detection
用于实时谷氨酸和 GABA 检测的植入式微阵列探针
基本信息
- 批准号:10761486
- 负责人:
- 金额:$ 90.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-18 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAffectAlzheimer&aposs DiseaseAmericanAnimal ModelAnimalsAreaBRAIN initiativeBehavioralBiological MarkersBiosensorBrainBrain DiseasesCalibrationChemicalsChronicCommunicationCortical ColumnDementiaDetectionDevelopmentDiseaseDisease modelDrug Delivery SystemsDrug usageElectrodesElectrophysiology (science)EnzymesEpilepsyEquilibriumEventFeasibility StudiesFormulationGlutamatesGoalsHealthcareHomeostasisHumanHybridsHydrogelsImplantIn SituIn VitroInflammationLeadLouisianaMarketingMeasurementMeasuresMechanicsMemoryMental disordersMethodsMicrodialysisMicroelectrodesMicrofluidicsModelingMonitorMotionNational Institute of Neurological Disorders and StrokeNeuronal PlasticityNeuronsNeurosciencesNeurosciences ResearchNeurotoxinsNeurotransmittersParkinson DiseasePatternPenetrationPerformancePeroxidesPharmaceutical PreparationsPhasePhysiologicalPlatinumPlayPolymersProcessPropertyRattusReagentReproducibilityResearchResearch PersonnelResistanceResolutionRoleSchizophreniaSiliconSmall Business Technology Transfer ResearchTechniquesTechnologyTemporal Lobe EpilepsyTestingTherapeuticTimeUniversitiesValidationVibrissaeWorkaddictionbarrel cortexbiomaterial compatibilitycostdensitydesigndetection sensitivityeffective therapyflexibilityfunctional improvementgamma-Aminobutyric Acidimprovedin vivoin vivo evaluationinformation processingmanufactureminiaturizenervous system disorderneuralneural implantneurochemistryneuronal circuitryneurotransmissionnovelprocess improvementprototyperesponsesensorsomatosensoryspatiotemporaltemporal measurementtoolusability
项目摘要
Project Summary
This STTR proposal will focus on developing and testing a novel, first-on-the-market implantable biosensor for
in vivo, real-time sensing of gamma-aminobutyric acid (GABA) and glutamate (GLU) for animal studies. GABA
and GLU are neurotransmitters (NTs) that are essential for information processing and plasticity, memory, and
other functions. GLU is the major excitatory NT and GABA is the major inhibitory NT; a proper balance between
them is vital for normal brain function. GLU-GABA dysregulation plays a critical role in several brain disorders,
including epilepsy (a disease affecting 1.2% of Americans), dementia (which will affect 130M worldwide by 2050)
and Parkinson’s (which affects 1.5M Americans today). A fundamental understanding of NT homeostasis
including its temporal components and its role on behavioral events within and across brain areas would lead to
a better understanding of human brain function and to new and more effective treatments. Existing NT sensing
methods measure only one NT at a time, suffer from poor spatiotemporal resolution, are unable to measure NT
dynamics at the circuit level, continuously in real time. Our goal is to develop an ultra-small, flexible (50µm)
neural probe for chronic, direct and simultaneous amperometric detection of GLU&GABA, with sub-second
temporal resolution and with no externally applied reagents. Phase I focused on manufacturing a prototype Si
penetrating shank-type probe with 4 micropatterned sensors and one microfluidic on-demand in-situ calibrator
(ODIC), optimizing the enzyme functionalization process, and performing a feasibility study on the measurement
of physiologically-relevant changes in the levels of GLU&GABA in real time for freely moving rats for up to 2
weeks. The objectives of Phase II are an upgrade of the probe into a brain micromotion-resistant hybrid Si-
flexible polymer probe of higher functionality (octrode + 2 ODIC micro-channels), improvements in selective
functionalization, and validation of the probes in a rat model of temporal lobe epilepsy. The multifunctional ODICs
will be applied to perform in-situ calibrations for chronic measurements and to investigate the circuit activity of 3
adjacent cortical layers in the whisker barrel cortex via chemical modulation. Upon completion, we expect to
deliver a unique-on-the-market dual NT probe of excellent reliability and superior sensitivity, selectivity, and
stability, with all performance parameters equal to or better than those offered by current technologies. To
achieve this, Alcorix will partner with experts in amperometric NT sensing research from Louisiana Tech U. and
experts in the manufacture of advanced neuroprobes from NeuroNexus, who will assist with hybrid Si-flexible
polymer integration, in vitro and in vivo evaluation, and eventual market entry. The proposed research will also
enable alternative uses such as point-of-use sensors for neurotoxins or disease bio-markers, and neural signal
recording or neurostimulation in conjunction with specific locally-injected drugs. The 2023 world market for
electrophysiological neuro-probes (Grand View Research) is about $266M, CAGR of 3.1%. If only 1% of that
market can be captured by this technology it would be more than sufficient justification for the proposed work.
项目概要
该 STTR 提案将重点开发和测试市场上首个新型植入式生物传感器,用于
体内实时检测γ-氨基丁酸 (GABA) 和谷氨酸 (GLU),用于动物研究。
GLU 和 GLU 是神经递质 (NT),对于信息处理和可塑性、记忆力和认知能力至关重要。
其他功能 GLU 是主要的兴奋性 NT 和 GABA 是主要的抑制性 NT 之间的适当平衡。
它们对于正常的大脑功能至关重要,GLU-GABA 失调在多种大脑疾病中起着至关重要的作用,
包括癫痫(一种影响 1.2% 美国人的疾病)、痴呆症(到 2050 年将影响全球 1.3 亿人)
和帕金森病(目前影响着 150 万美国人)。
包括其时间成分及其对大脑区域内和跨大脑区域的行为事件的作用将导致
更好地了解人类大脑功能以及新的、更有效的现有 NT 传感治疗方法。
方法一次只能测量一个 NT,时空分辨率较差,无法测量 NT
我们的目标是开发超小型、灵活(50μm)的电路级动态。
用于亚秒级慢性、直接、同步电流检测 GLU 和 GABA 的神经探针
第一阶段的重点是制造原型硅。
具有 4 个微图案传感器和 1 个微流体按需原位校准器的穿透柄型探针
(ODIC),优化酶功能化过程,并对测量进行可行性研究
自由活动大鼠的 GLU 和 GABA 水平的实时生理相关变化最多 2
第二阶段的目标是将探针升级为抗大脑微运动的混合硅。
更高功能的柔性聚合物探针(octrode + 2 ODIC 微通道),选择性改进
多功能 ODIC 的功能化和探针在颞叶癫痫大鼠模型中的验证。
将用于执行长期测量的原位校准并研究 3 的电路活动
完成后,我们期望通过化学调节来实现胡须桶皮层中的相邻皮质层。
提供市场上独特的双 NT 探头,具有卓越的可靠性和卓越的灵敏度、选择性和
稳定性,所有性能参数等于或优于现有技术。
为了实现这一目标,Alcorix 将与路易斯安那理工大学的电流 NT 传感研究专家合作,
NeuroNexus 制造先进神经探针的专家将协助混合硅柔性
聚合物整合、体外和体内评估以及最终的市场进入也将进行。
实现替代用途,例如神经毒素或疾病生物标记物的使用点传感器以及神经信号
与特定局部注射药物相结合的记录或神经刺激 2023 年的世界市场。
电生理神经探针(Grand View Research)约为 2.66 亿美元,复合年增长率为 3.1%,仅占其中的 1%。
如果这项技术能够占领市场,那么这将是拟议工作的充分理由。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Prabhu Arumugam其他文献
Prabhu Arumugam的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
小胶质细胞特异罕见易感突变介导相分离影响阿尔茨海默病发病风险的机制
- 批准号:82371438
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
OATPs介导Aβ/p-Tau转运对阿尔茨海默病病理机制形成及治疗影响的研究
- 批准号:82360734
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
超细颗粒物暴露对阿尔茨海默病的影响及其机制研究
- 批准号:82373532
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于个体水平的空气环境暴露组学探讨影响阿尔茨海默病的风险因素
- 批准号:82304102
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
利用小鼠模型研究Y染色体丢失对阿尔茨海默病的影响及分子机制
- 批准号:32260148
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
相似海外基金
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 90.4万 - 项目类别:
Impact of Mitochondrial Lipidomic Dynamics and its Interaction with APOE Isoforms on Brain Aging and Alzheimers Disease
线粒体脂质组动力学及其与 APOE 亚型的相互作用对脑衰老和阿尔茨海默病的影响
- 批准号:
10645610 - 财政年份:2023
- 资助金额:
$ 90.4万 - 项目类别:
Cerebrovascular mitochondria as mediators of neuroinflammation in Alzheimer's Disease
脑血管线粒体作为阿尔茨海默病神经炎症的介质
- 批准号:
10723580 - 财政年份:2023
- 资助金额:
$ 90.4万 - 项目类别:
Music4Pain Network: A research network to advance the study of mechanisms underlying the effects of music and music-based interventions on pain.
Music4Pain Network:一个研究网络,旨在推进音乐和基于音乐的疼痛干预措施的影响机制的研究。
- 批准号:
10764417 - 财政年份:2023
- 资助金额:
$ 90.4万 - 项目类别:
How Serine-129 Phosphorylation Status Affects the Spreading of α-Synuclein Pathology in Vivo: a Study in Knock-in Animals
Serine-129 磷酸化状态如何影响体内 α-突触核蛋白病理学的传播:敲入动物研究
- 批准号:
10736995 - 财政年份:2023
- 资助金额:
$ 90.4万 - 项目类别: