Deep Learning Reconstruction for Rapid Multi-Component Relaxometry
快速多分量松弛测量的深度学习重建
基本信息
- 批准号:10598038
- 负责人:
- 金额:$ 21.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAddressAlgorithmsAnatomyArchitectureBehaviorBiochemicalBiological MarkersBody RegionsCartilageCharacteristicsClinicalComputer Vision SystemsDataData SetDegenerative polyarthritisDemyelinationsDiseaseEnsureEnvironmentFoundationsGoalsImageImaging TechniquesKneeKnee OsteoarthritisKnowledgeMagnetic Resonance ImagingMapsMeasuresMethodsModelingMultiple SclerosisMyelinNoisePathologyPatientsPerformanceProcessPropertyProtonsRelaxationReproducibilityResearchResearch ProposalsResolutionSamplingScanningSignal TransductionStagingStructureSystemTechniquesTimeTissuesTrainingWaterclinical applicationclinical translationcontrast imagingconvolutional neural networkdeep learningdeep learning modeldigitalgenerative adversarial networkhuman tissueimage reconstructionimprovedlearning strategyneural networknovelpre-clinicalprospectiverapid techniquereconstructionsimulationtissue mapping
项目摘要
PROJECT SUMMARY
Relaxometry is among the most used MRI technique for quantifying tissue properties. Multi-component
relaxometry measures the relaxation characteristics of multiple water components, thus delivers both sensitive
and specific MR biomarkers for evaluating composition and microstructure of tissues such as cartilage and
myelin. However, due to the need to fit a complicated noise-sensitive MR signal model, multi-component
relaxation mapping requires repeated scans with a long scan time, limiting its widespread clinical use. The goal
of this research proposal is to develop a novel method via leveraging the latest deep learning techniques for
realizing accurate and high-quality multi-component relaxation mapping at a rapid, clinical feasible acquisition.
While many recent deep learning reconstruction studies have focused on rapid imaging for static MR images
with promising results, applications of deep learning for accelerated relaxation mapping have been limited. In
this project, we propose to develop, optimize, and evaluate a new deep learning technique that enables
accurate characterization and quantification of tissues with multi-component relaxation properties. Building on
the foundation of our newly developed deep learning method for rapid imaging, our proposed approach will
utilize an efficient end-to-end convolutional neural network to directly convert undersampled MR images into
accurate parametric maps for multi-component relaxation. A novel numerical Bloch-simulation based algorithm
is applied to precisely model the multi-component relaxation behavior to ensure accuracy, reliability, and
robustness in the deep learning training process. Generative adversarial network will be incorporated to further
enhance the reconstruction performance to ensure high-quality multi-component relaxation mapping at high
acceleration rates. This proposal will also explore new data augmentation approaches by using synthetic
image datasets to create a widely generalizable deep learning model. This ensures that the proposed deep
learning method can be applied to different relaxation types (e.g., T2, T1 and T1ρ) in many body regions, even
if limited training datasets are available. Our proposal includes two specific aims: (i) to develop model-based
deep learning method for rapid multi-component relaxometry, and (ii) to investigate the use of synthetic image
datasets for training deep learning model. The overall hypothesis is that the proposed reconstruction technique
can offer a unique opportunity to explore the acceleration of multi-component relaxometry by leveraging the
latest deep learning techniques, resulting in an accurate, efficient, and reliable model that can be widely
generalizable. Successful completion of the project will provide a clinically applicable multi-component
relaxometry technique for better studying, understanding, and staging diseases such as osteoarthritis and
multiple sclerosis. This concept could significantly advance quantitative MRI for clinical translation.
项目摘要
松弛计是量化组织特性的最常用的MRI技术之一。多组件
放松测量多个水成分的松弛特征,因此可以提供两个敏感的
以及用于评估软骨和组织的组成和微观结构的特定MR生物标志物,例如软骨和
髓线。但是,由于需要拟合复杂的噪声敏感MR信号模型,多组分
放松映射需要在扫描时间长的时间内重复扫描,从而限制其宽度临床的使用。目标
这项研究建议是通过利用最新的深度学习技术来开发一种新颖的方法
在快速,临床可行的采集中实现准确和高质量的多组分放松映射。
尽管许多最近的深度学习重建研究都集中在静态MR图像的快速成像上
通过有希望的结果,深度学习在加速放松映射中的应用受到限制。在
我们建议该项目开发,优化和评估一种新的深度学习技术,以实现
具有多组分放松特性的组织的准确表征和数量。建立
我们新开发的深度学习方法的基础,我们提出的方法将
利用有效的端到端卷积神经网络直接将其采样的MR图像转换为
用于多组分放松的精确参数图。一种新型的基于Bloch仿真的算法
应用于精确建模多组分放松行为,以确保准确性,可靠性和
深度学习培训过程中的鲁棒性。生成对抗网络将合并以进一步
提高重建性能,以确保高质量的多组分放松映射
加速度。该建议还将通过使用合成来探索新的数据增强方法
图像数据集以创建一个广泛的深度学习模型。这确保了拟议的深处
学习方法可以应用于许多身体区域的不同放松类型(例如T2,T1和T1ρ),甚至
如果有限的培训数据集可用。我们的建议包括两个具体目标:(i)开发基于模型的目标
快速多组分松弛计的深度学习方法,以及(ii)研究合成图像的使用
用于培训深度学习模型的数据集。总体假设是提出的重建技术
可以提供一个独特的机会来探索多组分放松的加速
最新的深度学习技术,导致了一种准确,高效且可靠的模型,可以广泛
可推广。该项目的成功完成将提供临床适用的多组件
宽松计,用于更好的研究,理解和分期疾病,例如骨关节炎和
多发性硬化症。这个概念可以显着提高临床翻译的定量MRI。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Fang Liu其他文献
Fang Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Fang Liu', 18)}}的其他基金
Ultra-Fast High-Resolution Multi-Parametric MRI for Characterizing Cartilage Extracellular Matrix
用于表征软骨细胞外基质的超快速高分辨率多参数 MRI
- 批准号:
10929242 - 财政年份:2023
- 资助金额:
$ 21.02万 - 项目类别:
Rapid Three-dimensional Simultaneous Knee Multi-Relaxation Mapping
快速三维同步膝关节多重松弛映射
- 批准号:
10662544 - 财政年份:2022
- 资助金额:
$ 21.02万 - 项目类别:
Deep Learning Technology for Rapid Morphological and Quantitative Imaging of Knee Pathology
用于膝关节病理学快速形态学和定量成像的深度学习技术
- 批准号:
10444468 - 财政年份:2022
- 资助金额:
$ 21.02万 - 项目类别:
Rapid Three-dimensional Simultaneous Knee Multi-Relaxation Mapping
快速三维同步膝关节多重松弛映射
- 批准号:
10501420 - 财政年份:2022
- 资助金额:
$ 21.02万 - 项目类别:
Deep Learning Reconstruction for Rapid Multi-Component Relaxometry
快速多分量松弛测量的深度学习重建
- 批准号:
10372860 - 财政年份:2022
- 资助金额:
$ 21.02万 - 项目类别:
Deep Learning Technology for Rapid Morphological and Quantitative Imaging of Knee Pathology
用于膝关节病理学快速形态学和定量成像的深度学习技术
- 批准号:
10630920 - 财政年份:2022
- 资助金额:
$ 21.02万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Bioethical, Legal, and Anthropological Study of Technologies (BLAST)
技术的生物伦理、法律和人类学研究 (BLAST)
- 批准号:
10831226 - 财政年份:2023
- 资助金额:
$ 21.02万 - 项目类别:
Implementation of an impact assessment tool to optimize responsible stewardship of genomic data in the cloud
实施影响评估工具以优化云中基因组数据的负责任管理
- 批准号:
10721762 - 财政年份:2023
- 资助金额:
$ 21.02万 - 项目类别:
High-resolution cerebral microvascular imaging for characterizing vascular dysfunction in Alzheimer's disease mouse model
高分辨率脑微血管成像用于表征阿尔茨海默病小鼠模型的血管功能障碍
- 批准号:
10848559 - 财政年份:2023
- 资助金额:
$ 21.02万 - 项目类别:
A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
- 批准号:
10727940 - 财政年份:2023
- 资助金额:
$ 21.02万 - 项目类别:
Unified, Scalable, and Reproducible Neurostatistical Software
统一、可扩展且可重复的神经统计软件
- 批准号:
10725500 - 财政年份:2023
- 资助金额:
$ 21.02万 - 项目类别: