Ultra-Fast High-Resolution Multi-Parametric MRI for Characterizing Cartilage Extracellular Matrix
用于表征软骨细胞外基质的超快速高分辨率多参数 MRI
基本信息
- 批准号:10929242
- 负责人:
- 金额:$ 64.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-21 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PROJECT SUMMARY
Osteoarthritis (OA) is one of the most prevalent diseases affecting human joints, characterized by decreased
proteoglycan content and disruption of the collagen fiber network in the cartilage extracellular matrix. Quantitative
magnetic resonance (MR) imaging has been used to quantify cartilage composition and microstructure changes
due to extracellular matrix degeneration in OA research studies. While many quantitative MR techniques have
been explored, existing methods face serious limitations, including lack of specificity to assess individual
macromolecular components, sensitive to magic angle effect, susceptible to partial volume effect due to thick
image slice. More importantly, quantitative MR techniques typically require a much longer scan time than
standard imaging due to the need for repeated scans of the same imaging object at varying imaging parameters.
Spatial resolution and imaging volume coverage must be compromised to make a clinically feasible scan in OA
research studies. This proposal aims to develop a new imaging technique that can provide robust, sensitive, and
specific imaging biomarkers for simultaneously assessing cartilage proteoglycan and collagen components, and
meanwhile can be acquired at the submillimeter spatial resolution, thin image slice, and full knee coverage within
a 10-min scan time. Among all the quantitative MR techniques, multi-component T2 relaxation imaging has been
found to provide sensitive and specific information for cartilage proteoglycan content; cross-relaxation imaging
has been found to provide complementary information regarding the collagen fiber network of cartilage. The
proposal will develop a simultaneous multi-component T2 relaxation and cross-relaxation imaging technique that
can provide sensitive and specific imaging biomarkers to assess proteoglycan and collagen content and their
ultra-structures in a unified imaging framework (Aim 1). This imaging protocol will be optimized using rigorous
statistical methods and accelerated through a novel deep learning method that leverages self-supervised
learning and MR physics-informed tissue modeling. The derived MR imaging biomarkers will be correlated with
tissue histological, biochemical, and mechanical properties, which will create a basis for interpretation of the
clinical study results (Aim 2). A pilot clinical study using the optimized and accelerated imaging technique will be
performed on patients with varying degrees of knee OA, establishing the clinical evidence of the utility, efficiency,
and overall clinical value of this newly proposed technique on detecting OA incidence and predicting OA
progression (Aim 3). Our proposed new methods will root from developing novel rapid image acquisition,
combined with advanced deep learning reconstruction and automatic processing, all of which are pioneered by
our research team. Successful completion of the proposal will provide the OA research community with a new
set of MR biomarkers to non-invasively monitor disease-related and treatment-related changes in cartilage
composition and ultra-structure in human subjects.
项目摘要
骨关节炎(OA)是影响人类关节的最普遍的疾病之一,其特征是
软骨外基质中胶原蛋白纤维网络的蛋白聚糖含量和破坏。定量
磁共振(MR)成像已用于量化软骨组成和微观结构的变化
在OA研究中,由于细胞外基质变性。虽然许多定量的MR技术具有
经过探索,现有方法面临严重的局限性,包括缺乏评估个人的特异性
大分子成分,对魔法角效应敏感,易受部分体积效应的影响
图像切片。更重要的是,定量MR技术通常需要比
由于需要在不同的成像参数上重复扫描相同成像对象,因此标准成像。
必须妥协空间分辨率和成像量覆盖范围,以在OA中进行临床可行的扫描
研究。该建议旨在开发一种新的成像技术,可以提供强大,敏感和
用于同时评估软骨蛋白聚糖和胶原蛋白成分的特定成像生物标志物,以及
同时,可以在亚毫米空间分辨率,薄图像切片和全膝盖覆盖范围内获取
10分钟的扫描时间。在所有定量MR技术中,多组分T2松弛成像已经
发现为软骨蛋白聚糖含量提供敏感和特定的信息;交叉解释成像
已经发现可以提供有关软骨软化软骨网络的互补信息。这
提案将开发同时多组分的T2松弛和交叉删除成像技术
可以提供敏感的特定成像生物标志物来评估蛋白聚糖和胶原蛋白含量及其
统一成像框架中的超结构(AIM 1)。该成像协议将使用严格的
统计方法,并通过一种新的深度学习方法加速,该方法利用自我监督
学习和MR物理知识的组织建模。派生的MR成像生物标志物将与
组织组织学,生化和机械性能,这将为解释的基础
临床研究结果(AIM 2)。使用优化和加速成像技术的试点临床研究将是
对具有不同程度的膝盖OA的患者进行,建立了效用,效率的临床证据
以及这项新提出的有关检测OA发病率和预测OA的技术的总体临床价值
进展(目标3)。我们提出的新方法将植根于开发新型快速图像采集,
结合先进的深度学习重建和自动处理,所有这些都是由
我们的研究团队。该提案的成功完成将为OA研究社区提供新的
一组MR生物标志物,非侵入性监测软骨的疾病相关和与治疗相关的变化
人类受试者的组成和超结构。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
Fang Liu的其他基金
Rapid Three-dimensional Simultaneous Knee Multi-Relaxation Mapping
快速三维同步膝关节多重松弛映射
- 批准号:1066254410662544
- 财政年份:2022
- 资助金额:$ 64.32万$ 64.32万
- 项目类别:
Deep Learning Technology for Rapid Morphological and Quantitative Imaging of Knee Pathology
用于膝关节病理学快速形态学和定量成像的深度学习技术
- 批准号:1044446810444468
- 财政年份:2022
- 资助金额:$ 64.32万$ 64.32万
- 项目类别:
Rapid Three-dimensional Simultaneous Knee Multi-Relaxation Mapping
快速三维同步膝关节多重松弛映射
- 批准号:1050142010501420
- 财政年份:2022
- 资助金额:$ 64.32万$ 64.32万
- 项目类别:
Deep Learning Reconstruction for Rapid Multi-Component Relaxometry
快速多分量松弛测量的深度学习重建
- 批准号:1037286010372860
- 财政年份:2022
- 资助金额:$ 64.32万$ 64.32万
- 项目类别:
Deep Learning Technology for Rapid Morphological and Quantitative Imaging of Knee Pathology
用于膝关节病理学快速形态学和定量成像的深度学习技术
- 批准号:1063092010630920
- 财政年份:2022
- 资助金额:$ 64.32万$ 64.32万
- 项目类别:
Deep Learning Reconstruction for Rapid Multi-Component Relaxometry
快速多分量松弛测量的深度学习重建
- 批准号:1059803810598038
- 财政年份:2022
- 资助金额:$ 64.32万$ 64.32万
- 项目类别:
相似国自然基金
Tva受体结合K亚群禽白血病病毒gp85影响病毒易感宿主范围的分子机制
- 批准号:32302908
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
改性水泥基材料氯离子结合稳定性及其对钢筋锈蚀萌生的影响机制研究
- 批准号:52378276
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
鸡DEC 205结合肽的鉴定及其影响黏膜递送效率的研究
- 批准号:32302909
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
ALK融合伴侣结合蛋白通过空间位阻效应影响ALKoma异质性的分子机制
- 批准号:82303945
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
喀斯特森林林隙对土壤矿物结合有机碳积累与稳定的影响机制
- 批准号:32360385
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Causes and Downstream Effects of 14-3-3 Phosphorylation in Synucleinopathies
突触核蛋白病中 14-3-3 磷酸化的原因和下游影响
- 批准号:1060613210606132
- 财政年份:2024
- 资助金额:$ 64.32万$ 64.32万
- 项目类别:
Maternal immune activation remodeling of offspring glycosaminoglycan sulfation patterns during neurodevelopment
神经发育过程中后代糖胺聚糖硫酸化模式的母体免疫激活重塑
- 批准号:1050830510508305
- 财政年份:2023
- 资助金额:$ 64.32万$ 64.32万
- 项目类别:
Effects of Aging on Neuronal Lysosomal Damage Responses Driven by CMT2B-linked Rab7
衰老对 CMT2B 相关 Rab7 驱动的神经元溶酶体损伤反应的影响
- 批准号:1067878910678789
- 财政年份:2023
- 资助金额:$ 64.32万$ 64.32万
- 项目类别:
The role of core circadian regulator Bmal1 in axonal regeneration and nerve repair
核心昼夜节律调节因子 Bmal1 在轴突再生和神经修复中的作用
- 批准号:1067793210677932
- 财政年份:2023
- 资助金额:$ 64.32万$ 64.32万
- 项目类别:
Novel first-in-class Therapeutics for Rheumatoid Arthritis
类风湿关节炎的一流新疗法
- 批准号:1069674910696749
- 财政年份:2023
- 资助金额:$ 64.32万$ 64.32万
- 项目类别: