Rapid Three-dimensional Simultaneous Knee Multi-Relaxation Mapping

快速三维同步膝关节多重松弛映射

基本信息

  • 批准号:
    10501420
  • 负责人:
  • 金额:
    $ 42.77万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-15 至 2027-05-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY Osteoarthritis (OA) is one of the most prevalent diseases affecting human joints, characterized by decreased proteoglycan content and disruption of the collagen fiber network in the cartilage extracellular matrix. Magnetic resonance (MR) imaging has been used to quantify cartilage composition and microstructure changes due to degeneration in OA. Among all MR techniques, MR relaxometry is the most popular and can provide non-invasive, high-resolution, three-dimensional imaging biomarkers, which would be highly valuable in quantifying human tissues. Cartilage spin-spin (T2) relaxation time has been found to be sensitive to the changes of collagen ultrastructure associated with early cartilage degeneration. Cartilage spin-lattice relaxation in the rotating frame (T1ρ) is sensitive to the concentration changes of macromolecules and is correlated with proteoglycan loss in OA. The role of spin-lattice relaxation (T1) time has also been reported to correlate with the mechanical property changes of cartilage and is sensitive to progressive damage of the tissue. While each relaxation parameter provides limited and complementary information of cartilage, the capability of imaging T1, T2 and T1ρ together would provide a set of comprehensive imaging biomarkers for synergistically accessing the macromolecular content and their ultrastructure of cartilage. However, due to long scan time, poor image acquisition efficiency, and complex image reconstruction and tissue modeling, simultaneous multi-relaxation mapping is very challenging thus remains underdeveloped in OA research studies. This proposal will provide rapid three- dimensional simultaneous multi-relaxation imaging for mapping T1, T2, and T1ρ of the knee through developing a novel imaging sequence and reconstruction method (Aim 1). This new technique will leverage efficient three- dimensional golden-angle image acquisition and will be accelerated through a novel deep learning method that leverages self-supervised learning and MR physics-informed tissue modeling. The derived MR imaging biomarkers will be correlated with cartilage histological, biochemical, and mechanical properties, which will create a basis for interpretation of the clinical study results (Aim 2). A pilot clinical study using the optimized and accelerated imaging technique will be performed on patients with varying degrees of knee OA, establishing the clinical evidence of the utility, efficiency, and overall clinical value of multi-relaxation mapping on detecting and staging OA (Aim 3). Our proposed new methods will root from developing novel rapid image acquisition, combined with advanced deep learning reconstruction and automatic processing, all of which are pioneered by our team. Successful completion of the proposal will offer a new rapid imaging technique to non-invasively monitor disease-related and treatment-related changes in tissue composition and ultra-structure through multi- relaxation assessment. It will have broad clinical applications for OA and other diseases.
项目概要 骨关节炎(OA)是影响人类关节的最普遍的疾病之一,其特征是关节减少 软骨细胞外基质中的蛋白多糖含量和胶原纤维网络的破坏。 磁共振 (MR) 成像已用于量化软骨成分和微观结构的变化 在所有 MR 技术中,MR 松弛测量是最流行的,可以提供非侵入性、 高分辨率、三维成像生物标志物,这对于量化人类非常有价值 已发现软骨自旋(T2)弛豫时间对胶原蛋白的变化敏感。 与早期软骨退化相关的超微结构旋转框架中的软骨自旋晶格松弛。 (T1ρ) 对大分子的浓度变化敏感,并且与蛋白聚糖损失相关 据报道,自旋晶格弛豫 (T1) 时间的作用也与机械性能相关。 软骨的变化并对组织的渐进损伤敏感,而每个松弛参数。 提供软骨的有限和补充信息,同时成像 T1、T2 和 T1ρ 的能力 将提供一套全面的成像生物标志物,用于协同访问大分子 然而,由于扫描时间长、图像采集效率差, 和复杂的图像重建和组织建模,同时多松弛映射是非常重要的 因此,OA 研究仍具有挑战性,该提案将提供快速的三项研究。 通过开发同时三维多松弛成像来绘制膝盖的 T1、T2 和 T1ρ 一种新颖的成像序列和重建方法(目标 1)。 三维黄金角度图像采集,并将通过一种新颖的深度学习方法加速, 利用自我监督学习和基于 MR 物理的组织建模。 生物标志物将与软骨组织学、生化和机械特性相关,这将 为临床研究结果的解释奠定基础(目标 2)。 加速成像技术将对不同程度的膝关节骨关节炎患者进行,建立 多重松弛映射在检测和诊断方面的实用性、效率和整体临床价值的临床证据 分期 OA(目标 3)。我们提出的新方法将源于开发新颖的快速图像采集, 结合先进的深度学习重建和自动处理,所有这些都是由 我们的团队成功完成该提案将为非侵入性提供一种新的快速成像技术。 通过多种方式监测组织成分和超微结构中与疾病相关和治疗相关的变化 松弛评估对于 OA 和其他疾病具有广泛的临床应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Fang Liu其他文献

Fang Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Fang Liu', 18)}}的其他基金

Ultra-Fast High-Resolution Multi-Parametric MRI for Characterizing Cartilage Extracellular Matrix
用于表征软骨细胞外基质的超快速高分辨率多参数 MRI
  • 批准号:
    10929242
  • 财政年份:
    2023
  • 资助金额:
    $ 42.77万
  • 项目类别:
Rapid Three-dimensional Simultaneous Knee Multi-Relaxation Mapping
快速三维同步膝关节多重松弛映射
  • 批准号:
    10662544
  • 财政年份:
    2022
  • 资助金额:
    $ 42.77万
  • 项目类别:
Deep Learning Technology for Rapid Morphological and Quantitative Imaging of Knee Pathology
用于膝关节病理学快速形态学和定量成像的深度学习技术
  • 批准号:
    10444468
  • 财政年份:
    2022
  • 资助金额:
    $ 42.77万
  • 项目类别:
Deep Learning Reconstruction for Rapid Multi-Component Relaxometry
快速多分量松弛测量的深度学习重建
  • 批准号:
    10372860
  • 财政年份:
    2022
  • 资助金额:
    $ 42.77万
  • 项目类别:
Deep Learning Technology for Rapid Morphological and Quantitative Imaging of Knee Pathology
用于膝关节病理学快速形态学和定量成像的深度学习技术
  • 批准号:
    10630920
  • 财政年份:
    2022
  • 资助金额:
    $ 42.77万
  • 项目类别:
Deep Learning Reconstruction for Rapid Multi-Component Relaxometry
快速多分量松弛测量的深度学习重建
  • 批准号:
    10598038
  • 财政年份:
    2022
  • 资助金额:
    $ 42.77万
  • 项目类别:

相似国自然基金

基于中高纬度结冰湖泊现场实测数据的关键物理驱动因子对冰下水生化要素影响机制和数学模式研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    万元
  • 项目类别:
    国际(地区)合作与交流项目
基于代谢组学研究玉米大斑病菌漆酶影响病菌发育及致病的生化机制
  • 批准号:
    31901827
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
花铃期干旱影响棉花花粉育性的生理生化机制与调控
  • 批准号:
    31901463
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
乙酰化修饰调控类泛素连接酶PafA的活性影响结核分枝杆菌生存的机制研究
  • 批准号:
    31900112
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
猪肉成熟与冷藏过程对其热源性晚期糖化终末产物的影响机制
  • 批准号:
    31871733
  • 批准年份:
    2018
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目

相似海外基金

Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
  • 批准号:
    10595404
  • 财政年份:
    2023
  • 资助金额:
    $ 42.77万
  • 项目类别:
Mechanisms of Mammalian Genetic Hearing Loss
哺乳动物遗传性听力损失的机制
  • 批准号:
    10660134
  • 财政年份:
    2023
  • 资助金额:
    $ 42.77万
  • 项目类别:
3D Methodology for Interpreting Disease-Associated Genomic Variation in RAG2
解释 RAG2 中疾病相关基因组变异的 3D 方法
  • 批准号:
    10724152
  • 财政年份:
    2023
  • 资助金额:
    $ 42.77万
  • 项目类别:
Biomimetic Vascular Matrix for Vascular Smooth Muscle Cell Mechanobiology and Pathology
用于血管平滑肌细胞力学生物学和病理学的仿生血管基质
  • 批准号:
    10586599
  • 财政年份:
    2023
  • 资助金额:
    $ 42.77万
  • 项目类别:
Pericyte reprogramming in fibrosis
纤维化中的周细胞重编程
  • 批准号:
    10578526
  • 财政年份:
    2023
  • 资助金额:
    $ 42.77万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了