Rapid Three-dimensional Simultaneous Knee Multi-Relaxation Mapping

快速三维同步膝关节多重松弛映射

基本信息

  • 批准号:
    10501420
  • 负责人:
  • 金额:
    $ 42.77万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-15 至 2027-05-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY Osteoarthritis (OA) is one of the most prevalent diseases affecting human joints, characterized by decreased proteoglycan content and disruption of the collagen fiber network in the cartilage extracellular matrix. Magnetic resonance (MR) imaging has been used to quantify cartilage composition and microstructure changes due to degeneration in OA. Among all MR techniques, MR relaxometry is the most popular and can provide non-invasive, high-resolution, three-dimensional imaging biomarkers, which would be highly valuable in quantifying human tissues. Cartilage spin-spin (T2) relaxation time has been found to be sensitive to the changes of collagen ultrastructure associated with early cartilage degeneration. Cartilage spin-lattice relaxation in the rotating frame (T1ρ) is sensitive to the concentration changes of macromolecules and is correlated with proteoglycan loss in OA. The role of spin-lattice relaxation (T1) time has also been reported to correlate with the mechanical property changes of cartilage and is sensitive to progressive damage of the tissue. While each relaxation parameter provides limited and complementary information of cartilage, the capability of imaging T1, T2 and T1ρ together would provide a set of comprehensive imaging biomarkers for synergistically accessing the macromolecular content and their ultrastructure of cartilage. However, due to long scan time, poor image acquisition efficiency, and complex image reconstruction and tissue modeling, simultaneous multi-relaxation mapping is very challenging thus remains underdeveloped in OA research studies. This proposal will provide rapid three- dimensional simultaneous multi-relaxation imaging for mapping T1, T2, and T1ρ of the knee through developing a novel imaging sequence and reconstruction method (Aim 1). This new technique will leverage efficient three- dimensional golden-angle image acquisition and will be accelerated through a novel deep learning method that leverages self-supervised learning and MR physics-informed tissue modeling. The derived MR imaging biomarkers will be correlated with cartilage histological, biochemical, and mechanical properties, which will create a basis for interpretation of the clinical study results (Aim 2). A pilot clinical study using the optimized and accelerated imaging technique will be performed on patients with varying degrees of knee OA, establishing the clinical evidence of the utility, efficiency, and overall clinical value of multi-relaxation mapping on detecting and staging OA (Aim 3). Our proposed new methods will root from developing novel rapid image acquisition, combined with advanced deep learning reconstruction and automatic processing, all of which are pioneered by our team. Successful completion of the proposal will offer a new rapid imaging technique to non-invasively monitor disease-related and treatment-related changes in tissue composition and ultra-structure through multi- relaxation assessment. It will have broad clinical applications for OA and other diseases.
项目摘要 骨关节炎(OA)是影响人类关节的最普遍的疾病之一,其特征是 软骨外基质中胶原蛋白纤维网络的蛋白聚糖含量和破坏。磁的 共振(MR)成像已用于量化由于 OA的变性。在所有MR技术中,Leasation先生是最受欢迎的,并且可以提供无创的, 高分辨率,三维成像生物标志物,这对于量化人来说非常有价值 组织。已经发现软骨自旋旋转(T2)松弛时间对胶原蛋白的变化很敏感 与早期软骨变性有关的超微结构。旋转框架中的软骨自旋晶格松弛 (T1ρ)对大分子的浓度变化敏感,并且与蛋白聚糖损失相关 OA。据报道,自旋晶格松弛时间(T1)时间的作用与机械性能相关 软骨的变化,对组织的进行性损害敏感。而每个放松参数 提供软骨的有限和互补信息,成像T1,T2和T1ρ的能力一起 将提供一组全面的成像生物标志物,以协同访问大分子 内容及其软骨的超微结构。但是,由于扫描时间很长,图像采集效率差, 以及复杂的图像重建和组织建模,同时进行多余的映射非常 因此,在OA研究中,具有挑战性的挑战仍然不发达。该提议将提供三个快速的3- 通过发育的尺寸绘制膝关节映射T1,T2和T1ρ的尺寸同时进行多余的成像 一种新型的成像序列和重建方法(AIM 1)。这种新技术将利用有效的三个 尺寸的黄金角度图像获取,并将通过一种新颖的深度学习方法加速 利用自我监督的学习和MR物理学的组织建模。派生的MR成像 生物标志物将与软骨组织学,生化和机械性能相关,这将 为解释临床研究结果创建基础(AIM 2)。使用优化和 将对具有不同程度的膝盖OA的患者进行加速成像技术,并确定 多释放映射的效用,效率和总体临床价值的临床证据 OA(目标3)。我们提出的新方法将植根于开发新型快速图像采集, 结合先进的深度学习重建和自动处理,所有这些都是由 我们的团队。该提案的成功完成将为非侵入性提供新的快速成像技术 通过多种 放松评估。它将针对OA和其他疾病提供广泛的临床应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Fang Liu其他文献

Fang Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Fang Liu', 18)}}的其他基金

Ultra-Fast High-Resolution Multi-Parametric MRI for Characterizing Cartilage Extracellular Matrix
用于表征软骨细胞外基质的超快速高分辨率多参数 MRI
  • 批准号:
    10929242
  • 财政年份:
    2023
  • 资助金额:
    $ 42.77万
  • 项目类别:
Rapid Three-dimensional Simultaneous Knee Multi-Relaxation Mapping
快速三维同步膝关节多重松弛映射
  • 批准号:
    10662544
  • 财政年份:
    2022
  • 资助金额:
    $ 42.77万
  • 项目类别:
Deep Learning Technology for Rapid Morphological and Quantitative Imaging of Knee Pathology
用于膝关节病理学快速形态学和定量成像的深度学习技术
  • 批准号:
    10444468
  • 财政年份:
    2022
  • 资助金额:
    $ 42.77万
  • 项目类别:
Deep Learning Reconstruction for Rapid Multi-Component Relaxometry
快速多分量松弛测量的深度学习重建
  • 批准号:
    10372860
  • 财政年份:
    2022
  • 资助金额:
    $ 42.77万
  • 项目类别:
Deep Learning Technology for Rapid Morphological and Quantitative Imaging of Knee Pathology
用于膝关节病理学快速形态学和定量成像的深度学习技术
  • 批准号:
    10630920
  • 财政年份:
    2022
  • 资助金额:
    $ 42.77万
  • 项目类别:
Deep Learning Reconstruction for Rapid Multi-Component Relaxometry
快速多分量松弛测量的深度学习重建
  • 批准号:
    10598038
  • 财政年份:
    2022
  • 资助金额:
    $ 42.77万
  • 项目类别:

相似国自然基金

基于中高纬度结冰湖泊现场实测数据的关键物理驱动因子对冰下水生化要素影响机制和数学模式研究
  • 批准号:
    52211530038
  • 批准年份:
    2022
  • 资助金额:
    10.00 万元
  • 项目类别:
    国际(地区)合作与交流项目
基于中高纬度结冰湖泊现场实测数据的关键物理驱动因子对冰下水生化要素影响机制和数学模式研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    万元
  • 项目类别:
    国际(地区)合作与交流项目
基于中高纬度结冰湖泊现场实测数据的关键物理驱动因子对冰下水生化要素影响机制和数学模式研究
  • 批准号:
    5211101848
  • 批准年份:
    2021
  • 资助金额:
    0.00 万元
  • 项目类别:
    国际(地区)合作与交流项目
花铃期干旱影响棉花花粉育性的生理生化机制与调控
  • 批准号:
    31901463
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
基于代谢组学研究玉米大斑病菌漆酶影响病菌发育及致病的生化机制
  • 批准号:
    31901827
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
  • 批准号:
    10595404
  • 财政年份:
    2023
  • 资助金额:
    $ 42.77万
  • 项目类别:
An Engineered Hydrogel Platform to Improve Neural Organoid Reproducibility for a Multi-Organoid Disease Model of 22q11.2 Deletion Syndrome
一种工程水凝胶平台,可提高 22q11.2 缺失综合征多器官疾病模型的神经类器官再现性
  • 批准号:
    10679749
  • 财政年份:
    2023
  • 资助金额:
    $ 42.77万
  • 项目类别:
Multi-tissue type condensations for trachea tissue regeneration via individual cell bioprinting
通过单细胞生物打印进行气管组织再生的多组织类型浓缩
  • 批准号:
    10643041
  • 财政年份:
    2023
  • 资助金额:
    $ 42.77万
  • 项目类别:
Full Project 1: Defining Mechanisms of MICAL-dependent Pancreatic Cancer Cell Migration
完整项目 1:MICAL 依赖性胰腺癌细胞迁移的定义机制
  • 批准号:
    10762273
  • 财政年份:
    2023
  • 资助金额:
    $ 42.77万
  • 项目类别:
3D Methodology for Interpreting Disease-Associated Genomic Variation in RAG2
解释 RAG2 中疾病相关基因组变异的 3D 方法
  • 批准号:
    10724152
  • 财政年份:
    2023
  • 资助金额:
    $ 42.77万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了