Integrating Artificial Intelligence for Optimal Analysis of CardiacPET/CT
集成人工智能以优化心脏 PET/CT 分析
基本信息
- 批准号:10593858
- 负责人:
- 金额:$ 73.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-22 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:AdoptionAnatomyArtificial IntelligenceAtherosclerosisAutomationBlood flowCardiacCardiometabolic DiseaseCause of DeathClinicalClinical DataCollaborationsComplexComputer softwareComputing MethodologiesCoronaryCoronary ArteriosclerosisDataDetectionDevelopmentDiabetes MellitusDiagnosticDiffuseDiseaseDoseEngineeringFatty acid glycerol estersGoalsGrowthHybridsImageImage AnalysisIntelligenceIschemiaJointsKineticsKnowledgeMeasurementMeasuresMethodsMicrovascular DysfunctionModalityModelingMyocardialMyocardial perfusionNatureObesity EpidemicPET/CT scanPatient CarePatient riskPatientsPerformancePerfusionPhysiciansPositron-Emission TomographyProtocols documentationPsyche structureQuality ControlRadioisotopesRadiology SpecialtyResearchResearch PersonnelRisk AssessmentScanningSiteStatistical ModelsSupervisionSurvival AnalysisTechnical ExpertiseTechniquesTechnologyTestingTranslatingVisualWidespread DiseaseWorkX-Ray Computed Tomographyadverse outcomeartificial intelligence algorithmattenuationbasebiomedical imagingcardiovascular imagingchest computed tomographyclinical applicationclinical imagingcoronary artery calciumdeep learningdiagnostic accuracydisabilitydisease diagnosisdisorder riskdiverse dataexperienceheart imagingimage processingimaging Segmentationimaging biomarkerimaging modalityimprovedmedical specialtiesmultidisciplinarymultimodal datamultimodalitynew technologynoveloutcome predictionperfusion imagingprognosticprototyperisk stratificationsingle photon emission computed tomographysupervised learningtoolunsupervised learning
项目摘要
PROJECT SUMMARY
Coronary artery disease (CAD) is the leading cause of death and disability in the US and globally. The epidemic
of obesity, diabetes, and cardiometabolic disease is changing the nature of CAD, with diffuse and microvascular
disease emerging as key drivers of adverse outcomes. Radionuclide myocardial perfusion imaging is the most
widely used modality for CAD assessment and is still primarily performed with SPECT. But SPECT evaluates
only relative perfusion and is inherently insensitive in the setting of diffuse or microvascular disease. PET, with
its unique ability to accurately quantify absolute myocardial blood flow, allows robust detection of obstructive
CAD, diffuse atherosclerosis, balanced ischemia, and coronary microvascular dysfunction. Cardiac PET is also
always obtained with additional chest CT for attenuation correction purposes. However, this modality requires a
high level of on-site technical expertise to maximize its broad capabilities.
We have applied highly efficient, image-based artificial intelligence (AI) approaches extensively to SPECT and
CT, demonstrating improved diagnostic accuracy and risk stratification. These tools can be harnessed to
enhance the utility of cardiac PET/CT. We propose to efficiently translate the latest AI advances and our recent
SPECT developments to fully automate cardiac PET/CT analysis, including novel tools for quality control, high-
performance image segmentation, new quantitative variables, and direct outcome prediction from images, using
PET/CT data from multiple centers.
The overall aim is to develop is to develop practical AI algorithms for comprehensive cardiac PET/CT analysis
and to validate them in a multi-center setting. For this work, we propose the following 3 specific aims: (1) To
develop and test automated end-to-end PET quantification, (2) To develop and test automated end-to-end chest
CT quantification, (3) To develop and validate explainable AI models for enhanced patient assessment from
images and clinical data, employing latest advances in survival analysis, supervised and unsupervised learning,
and knowledge transfer.
This research will result in personalized tools, which will improve the accuracy of patient assessment by PET/CT
beyond what is possible by the current practice of subjective interpretation and mental integration of diverse
data. Explainable methods combining image and clinical data to make AI conclusions more tangible will allow
clinical adoption of this technology. The new tools can dramatically simplify PET/CT protocols, reduce
subjectivity, reduce burden on the physicians, and maximize the information derived from the multimodal scans.
They will fit directly into existing workflows, facilitating deployment in diverse clinical settings. The new AI
methods for image analysis and explainable integration of multimodality data will generalize to other diseases
and problems in biomedical imaging.
项目摘要
冠状动脉疾病(CAD)是美国和全球死亡和残疾的主要原因。流行
肥胖,糖尿病和心脏代谢性疾病正在改变CAD的性质,并具有弥漫性和微血管
疾病作为不良后果的关键驱动因素而出现。放射性核素心肌灌注成像最多
广泛使用用于CAD评估的模态,并且仍主要通过SPECT进行。但是SPECT评估
仅相对灌注,并且在弥漫性或微血管疾病的情况下固有地不敏感。宠物,有
它准确量化绝对心肌流动的独特能力,可稳健地检测阻塞性
CAD,弥漫性动脉粥样硬化,平衡缺血和冠状动脉微血管功能障碍。心脏宠物也是
始终以额外的胸部CT获得衰减校正目的。但是,这种方式需要一个
高水平的现场技术专长,以最大程度地提高其广泛的能力。
我们已经应用了高效的,基于图像的人工智能(AI)广泛地用于SPECT和
CT,证明诊断准确性和风险分层提高。这些工具可以利用
增强心脏宠物/CT的效用。我们建议有效地翻译最新的AI进步和我们的最新进展
SPECT开发以完全自动化心脏PET/CT分析,包括用于质量控制的新工具,高
性能图像分割,新的定量变量和图像的直接结果预测,使用
来自多个中心的PET/CT数据。
总体目的是开发用于全面心脏宠物/CT分析的实用AI算法
并在多中心设置中验证它们。对于这项工作,我们提出以下3个特定目的:(1)
开发和测试自动端到端宠物量化,(2)开发和测试自动端到端胸部
CT定量,(3)开发和验证可解释的AI模型,以增强患者评估
图像和临床数据采用生存分析的最新进展,监督和无监督的学习,
和知识转移。
这项研究将导致个性化工具,这将提高PET/CT的患者评估的准确性
超越了当前主观解释和多样化的心理整合的实践
数据。结合图像和临床数据以使AI结论更加明显的可解释方法将允许
该技术的临床采用。新工具可以极大地简化PET/CT协议,减少
主观性,减轻医生的负担,并最大化从多模式扫描中得出的信息。
它们将直接适合现有的工作流程,从而促进各种临床环境的部署。新的AI
图像分析的方法和多模式数据的可解释整合将推广到其他疾病
和生物医学成像中的问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marcelo F DI CARLI其他文献
Marcelo F DI CARLI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marcelo F DI CARLI', 18)}}的其他基金
Integrating Artificial Intelligence for Optimal Analysis of CardiacPET/CT
集成人工智能以优化心脏 PET/CT 分析
- 批准号:
10708921 - 财政年份:2022
- 资助金额:
$ 73.71万 - 项目类别:
Coronary Flow Reserve to Assess Cardiovascular Inflammation (CIRT-CFR)
冠状动脉血流储备评估心血管炎症 (CIRT-CFR)
- 批准号:
9232196 - 财政年份:2016
- 资助金额:
$ 73.71万 - 项目类别:
Coronary Flow Reserve to Assess Cardiovascular Inflammation (CIRT-CFR)
冠状动脉血流储备评估心血管炎症 (CIRT-CFR)
- 批准号:
9082786 - 财政年份:2016
- 资助金额:
$ 73.71万 - 项目类别:
Noninvasive Cardiovascular Imaging Research Training Program
无创心血管影像研究培训计划
- 批准号:
8699254 - 财政年份:2010
- 资助金额:
$ 73.71万 - 项目类别:
Noninvasive Cardiovascular Imaging Research Training Program
无创心血管影像研究培训计划
- 批准号:
9301342 - 财政年份:2010
- 资助金额:
$ 73.71万 - 项目类别:
Noninvasive Cardiovascular Imaging Research Training Program
无创心血管影像研究培训计划
- 批准号:
10454111 - 财政年份:2010
- 资助金额:
$ 73.71万 - 项目类别:
Noninvasive Cardiovascular Imaging Research Training Program
无创心血管影像研究培训计划
- 批准号:
8286236 - 财政年份:2010
- 资助金额:
$ 73.71万 - 项目类别:
Noninvasive Cardiovascular Imaging Research Training Program
无创心血管影像研究培训计划
- 批准号:
7943579 - 财政年份:2010
- 资助金额:
$ 73.71万 - 项目类别:
Noninvasive Cardiovascular Imaging Research Training Program
无创心血管影像研究培训计划
- 批准号:
8488465 - 财政年份:2010
- 资助金额:
$ 73.71万 - 项目类别:
Noninvasive Cardiovascular Imaging Research Training Program
无创心血管影像研究培训计划
- 批准号:
10641765 - 财政年份:2010
- 资助金额:
$ 73.71万 - 项目类别:
相似国自然基金
儿童脊柱区腧穴针刺安全性的发育解剖学及三维数字化研究
- 批准号:82360892
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于次生乳管网络结构发育比较解剖学和转录组学的橡胶树产胶机制研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
亚热带典型阔叶树种径向生长的解剖学特征及其碳分配调控机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于垂体腺瘤海绵窦侵袭模式的相关膜性解剖学及影像学研究
- 批准号:82201271
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
亚热带典型阔叶树种径向生长的解剖学特征及其碳分配调控机制
- 批准号:32201547
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Artificial Intelligence-based decision support for chemotherapy-response assessment in Brain Tumors
基于人工智能的脑肿瘤化疗反应评估决策支持
- 批准号:
10589512 - 财政年份:2023
- 资助金额:
$ 73.71万 - 项目类别:
Automated Sonographic Detection of Pulmonary Embolism Using Machine Learning Algorithm
使用机器学习算法自动超声检测肺栓塞
- 批准号:
10741242 - 财政年份:2023
- 资助金额:
$ 73.71万 - 项目类别:
Remote Kinesiology for Improving Human Health with Auto-locating Compliant Motion Tracking Stickers and Artificial Intelligence
通过自动定位兼容运动跟踪贴纸和人工智能来改善人类健康的远程运动机能学
- 批准号:
10751952 - 财政年份:2023
- 资助金额:
$ 73.71万 - 项目类别: