Integrating Artificial Intelligence for Optimal Analysis of CardiacPET/CT
集成人工智能以优化心脏 PET/CT 分析
基本信息
- 批准号:10708921
- 负责人:
- 金额:$ 72.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-22 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:AdoptionAnatomyArtificial IntelligenceAtherosclerosisAutomationBlood flowCardiacCardiometabolic DiseaseCause of DeathChestClinicalClinical DataCollaborationsComplexComputer softwareComputing MethodologiesCoronaryCoronary ArteriosclerosisDataDetectionDevelopmentDiabetes MellitusDiagnosticDiffuseDiseaseDoseEngineeringFatty acid glycerol estersGoalsGrowthHybridsImageImage AnalysisInstitutionIntelligenceIschemiaJointsKineticsKnowledgeMeasurementMeasuresMethodsMicrovascular DysfunctionModalityModelingMyocardialMyocardial perfusionNatureObesity EpidemicPatient CarePatient riskPatientsPerformancePerfusionPhysiciansPositron-Emission TomographyProtocols documentationPsyche structureQuality ControlRadioisotopesRadiology SpecialtyResearchResearch PersonnelRisk AssessmentScanningSiteStatistical ModelsSurvival AnalysisTechnical ExpertiseTechniquesTechnologyTestingTranslatingVisualWidespread DiseaseWorkadverse outcomeartificial intelligence algorithmartificial intelligence methodattenuationbiomedical imagingcardiovascular imagingclinical applicationclinical imagingcoronary artery calciumdeep learningdiagnostic accuracydisabilitydisease diagnosisdisorder riskdiverse dataexperienceheart imagingimage processingimaging Segmentationimaging biomarkerimaging modalityimprovedmedical specialtiesmultidisciplinarymultimodal datamultimodalitynew technologynoveloutcome predictionperfusion imagingprognosticprototyperisk stratificationsingle photon emission computed tomographysupervised learningtoolunsupervised learning
项目摘要
PROJECT SUMMARY
Coronary artery disease (CAD) is the leading cause of death and disability in the US and globally. The epidemic
of obesity, diabetes, and cardiometabolic disease is changing the nature of CAD, with diffuse and microvascular
disease emerging as key drivers of adverse outcomes. Radionuclide myocardial perfusion imaging is the most
widely used modality for CAD assessment and is still primarily performed with SPECT. But SPECT evaluates
only relative perfusion and is inherently insensitive in the setting of diffuse or microvascular disease. PET, with
its unique ability to accurately quantify absolute myocardial blood flow, allows robust detection of obstructive
CAD, diffuse atherosclerosis, balanced ischemia, and coronary microvascular dysfunction. Cardiac PET is also
always obtained with additional chest CT for attenuation correction purposes. However, this modality requires a
high level of on-site technical expertise to maximize its broad capabilities.
We have applied highly efficient, image-based artificial intelligence (AI) approaches extensively to SPECT and
CT, demonstrating improved diagnostic accuracy and risk stratification. These tools can be harnessed to
enhance the utility of cardiac PET/CT. We propose to efficiently translate the latest AI advances and our recent
SPECT developments to fully automate cardiac PET/CT analysis, including novel tools for quality control, high-
performance image segmentation, new quantitative variables, and direct outcome prediction from images, using
PET/CT data from multiple centers.
The overall aim is to develop is to develop practical AI algorithms for comprehensive cardiac PET/CT analysis
and to validate them in a multi-center setting. For this work, we propose the following 3 specific aims: (1) To
develop and test automated end-to-end PET quantification, (2) To develop and test automated end-to-end chest
CT quantification, (3) To develop and validate explainable AI models for enhanced patient assessment from
images and clinical data, employing latest advances in survival analysis, supervised and unsupervised learning,
and knowledge transfer.
This research will result in personalized tools, which will improve the accuracy of patient assessment by PET/CT
beyond what is possible by the current practice of subjective interpretation and mental integration of diverse
data. Explainable methods combining image and clinical data to make AI conclusions more tangible will allow
clinical adoption of this technology. The new tools can dramatically simplify PET/CT protocols, reduce
subjectivity, reduce burden on the physicians, and maximize the information derived from the multimodal scans.
They will fit directly into existing workflows, facilitating deployment in diverse clinical settings. The new AI
methods for image analysis and explainable integration of multimodality data will generalize to other diseases
and problems in biomedical imaging.
项目概要
冠状动脉疾病(CAD)是美国和全球死亡和残疾的主要原因。流行
肥胖、糖尿病和心脏代谢疾病的发病率正在改变 CAD 的性质,具有弥漫性和微血管性
疾病正在成为不良后果的关键驱动因素。放射性核素心肌灌注显像是最
广泛使用的 CAD 评估方式,目前仍主要通过 SPECT 进行。但 SPECT 评估
仅相对灌注,并且在弥漫性或微血管疾病的情况下本质上不敏感。 PET,具有
其独特的准确量化绝对心肌血流量的能力,可以稳健地检测梗阻
CAD、弥漫性动脉粥样硬化、平衡缺血和冠状动脉微血管功能障碍。心脏PET也
总是通过额外的胸部 CT 获得,用于衰减校正目的。然而,这种模式需要
高水平的现场技术专业知识,以最大限度地发挥其广泛的能力。
我们已将高效、基于图像的人工智能 (AI) 方法广泛应用于 SPECT 和
CT,显示诊断准确性和风险分层得到提高。这些工具可以用来
增强心脏 PET/CT 的实用性。我们建议有效地转化最新的人工智能进展和我们最近的成果
SPECT 的发展使心脏 PET/CT 分析完全自动化,包括用于质量控制、高
性能图像分割、新的定量变量以及图像的直接结果预测,使用
来自多个中心的 PET/CT 数据。
总体目标是开发用于综合心脏 PET/CT 分析的实用 AI 算法
并在多中心环境中验证它们。对于这项工作,我们提出以下 3 个具体目标:(1)
开发和测试自动化端到端 PET 定量,(2) 开发和测试自动化端到端胸部
CT 量化,(3) 开发和验证可解释的 AI 模型,以增强患者评估
图像和临床数据,采用生存分析、监督和非监督学习的最新进展,
和知识转移。
这项研究将产生个性化工具,从而提高 PET/CT 对患者评估的准确性
超出了目前主观解释和不同的心理整合实践所能做到的
数据。结合图像和临床数据的可解释方法将使人工智能结论更加具体
临床采用该技术。新工具可以极大地简化 PET/CT 方案,减少
主观性,减轻医生的负担,并最大限度地利用多模态扫描获得的信息。
它们将直接融入现有的工作流程,促进在不同临床环境中的部署。新的人工智能
图像分析和可解释的多模态数据整合方法将推广到其他疾病
以及生物医学成像中的问题。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Coronary Microvascular Function Following Severe Preeclampsia.
严重先兆子痫后的冠状动脉微血管功能。
- DOI:10.1101/2024.03.04.24303728
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Honigberg,MichaelC;Economy,KatherineE;Pabón,MariaA;Wang,Xiaowen;Castro,Claire;Brown,JeniferM;Divakaran,Sanjay;Weber,BrittanyN;Barrett,Leanne;Perillo,Anna;Sun,AninaY;Antoine,Tajmara;Farrohi,Faranak;Docktor,Brenda;Lau,Emil
- 通讯作者:Lau,Emil
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marcelo F DI CARLI其他文献
Marcelo F DI CARLI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marcelo F DI CARLI', 18)}}的其他基金
Integrating Artificial Intelligence for Optimal Analysis of CardiacPET/CT
集成人工智能以优化心脏 PET/CT 分析
- 批准号:
10593858 - 财政年份:2022
- 资助金额:
$ 72.04万 - 项目类别:
Coronary Flow Reserve to Assess Cardiovascular Inflammation (CIRT-CFR)
冠状动脉血流储备评估心血管炎症 (CIRT-CFR)
- 批准号:
9232196 - 财政年份:2016
- 资助金额:
$ 72.04万 - 项目类别:
Coronary Flow Reserve to Assess Cardiovascular Inflammation (CIRT-CFR)
冠状动脉血流储备评估心血管炎症 (CIRT-CFR)
- 批准号:
9082786 - 财政年份:2016
- 资助金额:
$ 72.04万 - 项目类别:
Noninvasive Cardiovascular Imaging Research Training Program
无创心血管影像研究培训计划
- 批准号:
8699254 - 财政年份:2010
- 资助金额:
$ 72.04万 - 项目类别:
Noninvasive Cardiovascular Imaging Research Training Program
无创心血管影像研究培训计划
- 批准号:
9301342 - 财政年份:2010
- 资助金额:
$ 72.04万 - 项目类别:
Noninvasive Cardiovascular Imaging Research Training Program
无创心血管影像研究培训计划
- 批准号:
10454111 - 财政年份:2010
- 资助金额:
$ 72.04万 - 项目类别:
Noninvasive Cardiovascular Imaging Research Training Program
无创心血管影像研究培训计划
- 批准号:
8286236 - 财政年份:2010
- 资助金额:
$ 72.04万 - 项目类别:
Noninvasive Cardiovascular Imaging Research Training Program
无创心血管影像研究培训计划
- 批准号:
7943579 - 财政年份:2010
- 资助金额:
$ 72.04万 - 项目类别:
Noninvasive Cardiovascular Imaging Research Training Program
无创心血管影像研究培训计划
- 批准号:
8488465 - 财政年份:2010
- 资助金额:
$ 72.04万 - 项目类别:
Noninvasive Cardiovascular Imaging Research Training Program
无创心血管影像研究培训计划
- 批准号:
10641765 - 财政年份:2010
- 资助金额:
$ 72.04万 - 项目类别:
相似国自然基金
儿童脊柱区腧穴针刺安全性的发育解剖学及三维数字化研究
- 批准号:82360892
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
寰枢椎脱位后路钉棒内固定系统复位能力优化的相关解剖学及生物力学研究
- 批准号:82272582
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
亚热带典型阔叶树种径向生长的解剖学特征及其碳分配调控机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于次生乳管网络结构发育比较解剖学和转录组学的橡胶树产胶机制研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
基于垂体腺瘤海绵窦侵袭模式的相关膜性解剖学及影像学研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Artificial Intelligence-based decision support for chemotherapy-response assessment in Brain Tumors
基于人工智能的脑肿瘤化疗反应评估决策支持
- 批准号:
10589512 - 财政年份:2023
- 资助金额:
$ 72.04万 - 项目类别:
Automated Sonographic Detection of Pulmonary Embolism Using Machine Learning Algorithm
使用机器学习算法自动超声检测肺栓塞
- 批准号:
10741242 - 财政年份:2023
- 资助金额:
$ 72.04万 - 项目类别:
Remote Kinesiology for Improving Human Health with Auto-locating Compliant Motion Tracking Stickers and Artificial Intelligence
通过自动定位兼容运动跟踪贴纸和人工智能来改善人类健康的远程运动机能学
- 批准号:
10751952 - 财政年份:2023
- 资助金额:
$ 72.04万 - 项目类别: