Automated Sonographic Detection of Pulmonary Embolism Using Machine Learning Algorithm
使用机器学习算法自动超声检测肺栓塞
基本信息
- 批准号:10741242
- 负责人:
- 金额:$ 30.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AcuteAdoptionAlgorithmsAnatomyArtificial IntelligenceCardiopulmonaryCause of DeathCessation of lifeClinicalClinical assessmentsComplexComputer softwareDataDetectionDevelopmentDiagnosisDiagnosticDiseaseEarly DiagnosisEarly identificationEchocardiographyEconomic BurdenEmergency treatmentEngineeringEnvironmentEvaluationGoalsHealthHealth Care CostsHealth PersonnelHealth StatusHealthcareHospitalizationHospitalsHourImageImage AnalysisLearningLifeMachine LearningMedical ImagingMissionMorbidity - disease rateMyocardial dysfunctionNational Institute of Biomedical Imaging and BioengineeringNeural Network SimulationOutcomePathologyPatient CarePatient-Focused OutcomesPatientsPatternPersonsPhysiciansPsychological reinforcementPublic HealthPulmonary EmbolismQuality of lifeResearchResolutionResource-limited settingResourcesRight Ventricular DysfunctionSensitivity and SpecificitySoftware ToolsSymptomsSystemTechniquesTechnologyTestingTherapeutic InterventionTimeTrainingUltrasonographyUnited StatesUnited States Food and Drug AdministrationVariantWorkacute careartificial intelligence algorithmcardiology serviceclinical decision supportclinical practiceclinical translationdeep learningdiagnostic accuracydiagnostic toolhealth care settingshemodynamicsimprovedinnovationmachine learning algorithmmortalitynoninvasive diagnosispoint of careprototyperapid detectionrapid diagnosisresearch clinical testingskillssupervised learningtoolultrasound
项目摘要
PROJECT SUMMARY/ABSTRACT
We propose a better way to diagnose pulmonary embolism (PE) early and save lives. More than 900,000 people in the
United States suffer from acute PE, and about 100,000 die each year. With 10% of such cases being fatal within the first
hour of the onset of symptoms, rapid diagnosis of PE is critical to direct appropriate therapy. Unfortunately, clinical
evaluation alone is unreliable and often results in grave diagnostic delays. Furthermore, while echocardiography at the
patient’s bedside can rapidly detect heart dysfunction caused by PE, traditional echocardiography performed by
cardiology services is not readily available in acute care settings. Thus, there is a critical need for use of a rapid, non-
invasive diagnostic tool at the point-of-care (POC) to accurately assess for PE and direct emergency therapy. The focus of
this research is to develop innovative artificial intelligence algorithms that can transform the care of patients with PE by
enabling non-experts to use echocardiography to detect PE, direct emergency therapy, and improve survival. The
rationale underlying this proposal is that the proposed artificial intelligence technology tools will provide a relatively
simple and time-efficient strategy that can be implemented in most healthcare settings. This will, in turn, fulfill the overall
goal of creating a positive shift in the management of patients presenting with PE. The proposed specialized artificial
intelligence technology would ultimately be applicable to early detection of a wide variety of diseases. The long-term
goal of our research is to develop and implement effective automated ultrasound tools that would significantly impact the
diagnosis and treatment of different life-threatening conditions. The objective of this proposal is to develop and validate a
prototype mobile artificial intelligence enabled-software platform that can accurately detect echocardiographic signs of
PE. The hypothesis is that artificial intelligence algorithms will achieve levels of diagnostic accuracy equivalent to expert
physician sonographers in detecting PE. This hypothesis will be tested by pursuing two specific aims: 1) Develop a
machine learning algorithm for the detection of PE that can be extended to detect other cardiopulmonary conditions using
explicit echocardiographic signs of PE and implicit image content representations. 2) Validate the accuracy of the
machine learning algorithm to detect PE on echocardiographic images using explicit sonographic signs. Innovative
reinforcement learning techniques will be utilized to accomplish the specific aims. The proposed research is significant
because it will transform the care of patients with PE by enabling non-experts to use POC echocardiography. It will also
have an immediate, positive impact because it will help lower morbidity, mortality, improve quality of life, and decrease
healthcare costs by expediting diagnosis and therapeutic interventions. The proximate expected outcome of this work is
improvement in the evaluation of patients with life-threatening PE by inexperienced healthcare providers, which will
result in more accurate and rapid identification of cases that require emergency treatment. Our proposal aligns with the
NIBIB’s overall mission to advance healthcare through innovative engineering and, more specifically, its emphasis on
development of transformative unsupervised and semi-supervised machine learning technologies to enhance analysis of
complex medical images and data for diagnosing and treating a wide range of diseases and health conditions.
项目概要/摘要
我们提出了一种更好的方法来早期诊断肺栓塞 (PE),并挽救了超过 900,000 人的生命。
美国每年约有 10 万人患有急性肺栓塞,其中 10% 的病例在首次死亡。
不幸的是,在症状出现时,快速诊断PE对于指导适当的治疗至关重要。
此外,单独的评估是不可靠的,并且经常导致严重的诊断延误。
患者床边可快速检测PE引起的心脏功能障碍,传统超声心动图由
在急症护理环境中,心脏病学服务并不容易获得,因此迫切需要使用快速、非快速的方法。
现场护理 (POC) 的侵入性诊断工具可准确评估 PE 并指导紧急治疗。
这项研究旨在开发创新的人工智能算法,通过以下方式改变 PE 患者的护理:
使非专家能够使用超声心动图来检测肺栓塞、指导紧急治疗并提高生存率。
该提案的基本原理是,所提出的人工智能技术工具将提供相对
可以在大多数医疗保健环境中实施的简单且省时的策略,这反过来又可以实现整体目标。
拟议的专门人工治疗的目标是在 PE 患者的治疗中创造积极的转变。
智能技术最终将适用于多种疾病的长期检测。
我们研究的目标是开发和实施有效的自动化超声工具,这将显着影响
该提案的目的是开发和验证不同危及生命的疾病的诊断和治疗。
原型移动人工智能软件平台,可以准确检测超声心动图迹象
假设人工智能算法将达到与专家相当的诊断准确性水平。
该假设将通过追求两个具体目标来检验:1)制定一个
用于检测 PE 的机器学习算法,可以扩展到使用以下方法检测其他心肺疾病
PE 的显式超声心动图征象和隐式图像内容表示 2) 验证准确性。
机器学习算法使用明确的超声征象检测超声心动图图像上的 PE。
强化学习技术将用于实现特定目标。所提出的研究具有重要意义。
因为它将通过使非专家能够使用 POC 超声心动图来改变 PE 患者的护理。
产生立竿见影的积极影响,因为它将有助于降低发病率和死亡率,提高生活质量,并减少
通过加快诊断和治疗干预来降低医疗保健成本 这项工作的近期预期成果是
经验不足的医疗保健提供者对危及生命的肺栓塞患者的评估得到改善,这将
从而更准确、更快速地识别需要紧急治疗的病例。
NIBIB 的总体使命是通过创新工程促进医疗保健,更具体地说,它强调
开发变革性的无监督和半监督机器学习技术,以增强对
用于诊断和治疗各种疾病和健康状况的复杂医学图像和数据。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Srikar Reddy Adhikari其他文献
Srikar Reddy Adhikari的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
采用复合防护材料的水下多介质耦合作用下重力坝抗爆机理研究
- 批准号:51779168
- 批准年份:2017
- 资助金额:59.0 万元
- 项目类别:面上项目
采用数值计算求解一类半代数系统全部整数解
- 批准号:11671377
- 批准年份:2016
- 资助金额:48.0 万元
- 项目类别:面上项目
采用pinball loss的MEE算法研究
- 批准号:11401247
- 批准年份:2014
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
采用路径算法和管网简化的城市内涝近实时模拟
- 批准号:41301419
- 批准年份:2013
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
采用ε近似算法的盲信道均衡
- 批准号:60172058
- 批准年份:2001
- 资助金额:16.0 万元
- 项目类别:面上项目
相似海外基金
Real-time Prediction of Adverse Outcomes After Surgery
实时预测手术后不良后果
- 批准号:
10724048 - 财政年份:2023
- 资助金额:
$ 30.59万 - 项目类别:
Development of the OpiAID strength band platform
OpiAID 力量带平台的开发
- 批准号:
10684399 - 财政年份:2023
- 资助金额:
$ 30.59万 - 项目类别:
Motion-Resistant Background Subtraction Angiography with Deep Learning: Real-Time, Edge Hardware Implementation and Product Development
具有深度学习的抗运动背景减影血管造影:实时、边缘硬件实施和产品开发
- 批准号:
10602275 - 财政年份:2023
- 资助金额:
$ 30.59万 - 项目类别:
An mHealth implementation strategy to address the syndemic of mental illness, hypertension, and HIV in Uganda
解决乌干达精神疾病、高血压和艾滋病毒综合症的移动医疗实施战略
- 批准号:
10752992 - 财政年份:2023
- 资助金额:
$ 30.59万 - 项目类别:
Clinical biomarker for early prediction of chemotherapy-induced peripheral neuropathy
早期预测化疗引起的周围神经病变的临床生物标志物
- 批准号:
10604018 - 财政年份:2023
- 资助金额:
$ 30.59万 - 项目类别: