Opposing RNAi Molecule Gradient Constructs to Repair Osteochondral Defects
相反的 RNAi 分子梯度构建修复骨软骨缺损
基本信息
- 批准号:10263140
- 负责人:
- 金额:$ 34.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-01 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAnimal ModelBiochemicalBiocompatible MaterialsBiological AssayBiomechanicsBiopolymersBone MarrowBone Morphogenetic ProteinsCartilageCell TransplantationCellsChargeChondrogenesisClinicalDefectDegenerative polyarthritisDextransDimensionsDiseaseDoseEncapsulatedEngineeringGelGene ExpressionGene SilencingGenesGenetic TranscriptionGrowth FactorHistologicHumanHydrogelsInjuryJointsKneeLaboratoriesLeadMechanicsMesenchymal Stem CellsMessenger RNAMicroRNAsMicrofluidic MicrochipsModelingMolecularMorphologyNatural regenerationNon-Viral VectorOryctolagus cuniculusOsteogenesisPainPathway interactionsPatientsPolyethyleneimineProcessProteinsQuality of lifeRNARNA InterferenceRNA deliveryReporter GenesSmall Interfering RNASourceStainsSystemTechnologyTestingTherapeuticTissue EngineeringTissuesTransfectionWorkarticular cartilageboneclinical translationcrosslinkdensitydesigndisabilityefficacious treatmenthealingimplantationimprovedin vivoknock-downmicrofluidic technologyosteochondral repairosteochondral tissueosteogenicpublic health relevancerecruitrepairedscaffoldspatiotemporalstem cell differentiationsubchondral bonetissue regenerationtool
项目摘要
DESCRIPTION: The treatment of osteochondral defects (OCDs), which involve damage to both the subchondral bone and articular cartilage in the affected joint, is challenging. Such debilitating defects lead to mechanical instability, pain and worsening osteoarthritic degeneration. Current therapies fail to consistently repair and restore tissue function. Osteochondral tissue engineering technology utilizing biomaterials in combination with recruited and/or transplanted cells, and/or bioactive factors has emerged as a promising alternative approach. Human mesenchymal stem cells (hMSCs) are an attractive cell source as they can easily be isolated from bone marrow, expanded in culture without losing multipotency, and under appropriate conditions can differentiate into cells of the osteogenic and chondrogenic lineages. RNA interference (RNAi) is a powerful tool permitting inhibition of gene expression at the post-translational level by the targeted destruction of specific mRNA molecules, and has the potential to revolutionize the functional repair of damaged tissue by decreasing the expression of specific proteins that negatively impact healing processes or by altering stem cell differentiation pathways. Importantly, RNAi molecules have been identified that can promote the osteogenic and chondrogenic differentiation of hMSCs. However, effective delivery of RNAi molecules to target cells in vivo remains a significant challenge limiting its therapeutic potentia. We have engineered biopolymer hydrogels capable of locally delivering bioactive RNAi molecules with tailorable release profiles for delivery to surrounding and encapsulated cells, and these gels have been used to spatially and temporally control cell gene expression and fate. Therefore, the central hypothesis of this application is that the controlled spatial and temporal presentation of dual opposing RNAi molecule gradients in a biopolymer hydrogel will drive osteogenesis and chondrogenesis of encapsulated hMSCs in opposite directions to form osteochondral constructs that can promote the healing of OCDs. This will be addressed by the following specific aims: (1) Engineer biopolymer hydrogels with opposing concentration gradients of two different siRNAs for spatiotemporally controlled, sustained gene knockdown, (2) Deliver RNAi molecules that promote osteogenesis and chondrogenesis from biopolymer gradient hydrogels and investigate their capacity to spatially guide the osteogenic and chondrogenic differentiation of encapsulated hMSCs, (3) Develop opposing RNAi molecule gradient hydrogels with tailorable dimensions using microfluidic technology, and (4) Assess the ability of the hydrogel constructs containing hMSCs and opposing RNAi molecule gradients to drive osteogenesis and chondrogenesis in vivo upon implantation into a rabbit OCD model. This application aims to demonstrate the utility of a new tissue engineering approach for enhanced osteochondral tissue regeneration, which would have great clinical utility by improving the quality of life of patients suffering from OCDs.
描述:骨软骨缺损(OCD)的治疗涉及到受影响关节的软骨下骨和关节软骨的损伤,这种使人衰弱的缺损会导致机械不稳定、疼痛和延长骨关节炎退化,目前的治疗方法无法持续修复。利用生物材料与招募和/或移植的细胞和/或生物活性因子结合的骨软骨组织工程技术已成为一种有前景的替代方法。间充质干细胞 (hMSC) 是一种有吸引力的细胞来源,因为它们可以很容易地从骨髓中分离出来,在培养中扩增而不会失去多能性,并且在适当的条件下可以分化为成骨细胞和软骨细胞谱系的细胞。它是一种强大的工具,可以通过有针对性地破坏特定的 mRNA 分子来抑制翻译后水平的基因表达,并有可能通过减少对愈合过程产生负面影响的特定蛋白质的表达或改变损伤组织的功能修复来彻底改变受损组织的功能修复。重要的是,RNAi 分子已被鉴定可以促进 hMSC 的成骨和软骨形成,然而,将 RNAi 分子有效递送至体内靶细胞仍然是限制其治疗潜力的重大挑战。局部递送生物活性 RNAi 分子,具有可定制的释放曲线,用于递送到周围和封装的细胞,并且这些凝胶已被用来在空间和时间上控制细胞基因表达和命运。因此,该应用的中心假设是。生物聚合物水凝胶中双重相反 RNAi 分子梯度的受控空间和时间呈现将驱动封装的 hMSC 沿相反方向成骨和软骨形成,形成骨软骨结构,从而促进强迫症的愈合。这将通过以下具体目标来解决: (1) 使用两种不同 siRNA 的竞争浓度梯度设计生物聚合物水凝胶,以实现时空控制、持续基因敲低,(2) 提供 RNAi 分子,促进生物聚合物梯度水凝胶的成骨和软骨形成,并研究其在空间上引导封装的 hMSC 成骨和软骨分化的能力,(3) 使用微流体技术开发具有可定制尺寸的反向 RNAi 分子梯度水凝胶,以及 (4) 评估水凝胶的能力含有 hMSC 和反向 RNAi 分子梯度的构建体在植入兔强迫症模型后可驱动体内成骨和软骨形成。该申请旨在证明一种新的组织工程方法在增强骨软骨组织再生方面的实用性,这将通过改善强迫症患者的生活质量而具有巨大的临床实用性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eben Alsberg其他文献
Eben Alsberg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eben Alsberg', 18)}}的其他基金
Individual cell bioprinting to generate multi-tissue type condensations for osteochondral tissue regeneration
单个细胞生物打印可生成用于骨软骨组织再生的多组织类型浓缩物
- 批准号:
10659772 - 财政年份:2023
- 资助金额:
$ 34.12万 - 项目类别:
Multi-tissue type condensations for trachea tissue regeneration via individual cell bioprinting
通过单细胞生物打印进行气管组织再生的多组织类型浓缩
- 批准号:
10643041 - 财政年份:2023
- 资助金额:
$ 34.12万 - 项目类别:
Mechanosensitive synthetic cell-regulatable hydrogels for tissue engineering
用于组织工程的机械敏感合成细胞调节水凝胶
- 批准号:
10570918 - 财政年份:2022
- 资助金额:
$ 34.12万 - 项目类别:
Mechanosensitive synthetic cell-regulatable hydrogels for tissue engineering
用于组织工程的机械敏感合成细胞调节水凝胶
- 批准号:
10354662 - 财政年份:2022
- 资助金额:
$ 34.12万 - 项目类别:
Engineering a Self-assembled, multi-tissue Tracheal Replacement
设计自组装多组织气管置换术
- 批准号:
9923657 - 财政年份:2019
- 资助金额:
$ 34.12万 - 项目类别:
Engineering a Self-assembled, multi-tissue Tracheal Replacement
设计自组装多组织气管置换术
- 批准号:
9899066 - 财政年份:2019
- 资助金额:
$ 34.12万 - 项目类别:
High-Throughput Microenvironment Regulation for Chondrogenesis
软骨形成的高通量微环境调节
- 批准号:
9732428 - 财政年份:2019
- 资助金额:
$ 34.12万 - 项目类别:
Opposing RNAi Molecule Gradient Constructs to Repair Osteochondral Defects
相反的 RNAi 分子梯度构建修复骨软骨缺损
- 批准号:
9728716 - 财政年份:2019
- 资助金额:
$ 34.12万 - 项目类别:
Opposing RNAi molecule gradient constructs to repair osteochondral defects
相反的RNAi分子梯度构建修复骨软骨缺损
- 批准号:
9265388 - 财政年份:2016
- 资助金额:
$ 34.12万 - 项目类别:
High-Throughput Microenvironment Regulation for Chondrogenesis
软骨形成的高通量微环境调节
- 批准号:
8914310 - 财政年份:2015
- 资助金额:
$ 34.12万 - 项目类别:
相似国自然基金
肾—骨应答调控骨骼VDR/RXR对糖尿病肾病动物模型FGF23分泌的影响及中药的干预作用
- 批准号:82074395
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
基于细胞自噬调控的苦参碱对多囊肾小鼠动物模型肾囊肿形成的影响和机制研究
- 批准号:
- 批准年份:2019
- 资助金额:33 万元
- 项目类别:地区科学基金项目
靶向诱导merlin/p53协同性亚细胞穿梭对听神经瘤在体生长的影响
- 批准号:81800898
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
伪狂犬病病毒激活三叉神经节细胞对其NF-кB和PI3K/Akt信号转导通路影响的分子机制研究
- 批准号:31860716
- 批准年份:2018
- 资助金额:39.0 万元
- 项目类别:地区科学基金项目
基于中枢胰岛素抵抗探讨自噬失调对肾虚阿尔茨海默的影响及机制研究
- 批准号:81803854
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
- 批准号:
10595404 - 财政年份:2023
- 资助金额:
$ 34.12万 - 项目类别:
Dravet Syndrome Anti-Epileptic Control by Targeting GIRK Channels
通过针对 GIRK 通道进行 Dravet 综合征抗癫痫控制
- 批准号:
10638439 - 财政年份:2023
- 资助金额:
$ 34.12万 - 项目类别:
Novel application of pharmaceutical AMD3100 to reduce risk in opioid use disorder: investigations of a causal relationship between CXCR4 expression and addiction vulnerability
药物 AMD3100 降低阿片类药物使用障碍风险的新应用:CXCR4 表达与成瘾脆弱性之间因果关系的研究
- 批准号:
10678062 - 财政年份:2023
- 资助金额:
$ 34.12万 - 项目类别:
Mechanisms of Metal Ion Homeostasis of Oral Streptococci
口腔链球菌金属离子稳态机制
- 批准号:
10680956 - 财政年份:2023
- 资助金额:
$ 34.12万 - 项目类别:
Design and testing of a novel circumesophageal cuff for chronic bilateral subdiaphragmatic vagal nerve stimulation (sVNS)
用于慢性双侧膈下迷走神经刺激(sVNS)的新型环食管套囊的设计和测试
- 批准号:
10702126 - 财政年份:2023
- 资助金额:
$ 34.12万 - 项目类别: