High-Throughput Microenvironment Regulation for Chondrogenesis
软骨形成的高通量微环境调节
基本信息
- 批准号:9732428
- 负责人:
- 金额:$ 40.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-01 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAffectAnimal ModelAutologous TransplantationBiochemicalBiocompatible MaterialsBiomechanicsBone MarrowCartilageCartilage injuryCellsCellularityChondrogenesisClinicClinicalClinical EngineeringCommunitiesCuesDefectDevelopmentEngineeringEnsureExtracellular MatrixFinancial costFutureGoalsGrowth FactorHip OsteoarthritisHospitalizationHumanHydrogelsIn VitroIndividualInjuryKnee OsteoarthritisKnowledgeMechanical StimulationMechanicsMedicalMesenchymal Stem CellsMicrofabricationMusculoskeletalNatural regenerationNatureNew ZealandOperative Surgical ProceduresOrthopedicsOryctolagus cuniculusPathway interactionsPatientsPerformancePlayPopulationProceduresProductionPropertyRegulationResearchResearch PersonnelResearch ProposalsRoleSafetySignal TransductionSourceSystemTestingTimeTissue EngineeringTissuesVariantagedarticular cartilagebasecartilage regenerationclinically relevantcombinatorialdesignexperienceimprovedin vitro testingin vivoin vivo Modelin vivo regenerationmechanical loadminimally invasiveosteochondral tissuepublic health relevanceregenerative therapyrepairedresponsestem cell differentiationstem cell proliferationsubchondral bonetissue injury
项目摘要
DESCRIPTION (provided by applicant): Musculoskeletal tissue injuries remain a significant challenge in orthopaedics research. For example, currently, millions of patients are suffering from cartilage injuries, with associated annual financial costs of more than $100 billion dollars. There are several viable clinical options to address these injuries. In this context, human mesenchymal stem cells (hMSCs) are a promising cell source for cartilage tissue engineering as they are capable of differentiating down the chondrogenic pathway, can be obtained from bone marrow in a minimally invasive manner, and are easily grown in culture. Although differentiation of hMSCs is regulated by soluble molecules, insoluble biochemical signals and mechanical cues, the combinatorial effects of mechanical loading and biomaterial signals are largely unknown. Our central hypothesis is that the use of high-throughput systems (HTSs) under mechanical stimulation can be used to elucidate single and synergistic microenvironmental factors for directing the chondrogenic differentiation of hMSCs, and thereby functional engineered cartilage formation in vitro and in a clinically relevant in vivo model. The information obtained from the HTS will help in the development of macroscale constructs with enhanced chondrogenesis, and the performance of these constructs will be validated in vivo by treating critical-sized articular cartilage defects. These goals will be accomplished by achieving the following specific Aims: (1) to develop three dimensional (3D) combinatorial HTS hydrogel-based microarrays, consisting of different extracellular matrix molecules and growth factors, which can be mechanically deformed to mimic the chondrogenic microenvironment of hMSCs, (2) to evaluate quantitatively the chondrogenic differentiation response of hMSCs in 3D combinatorial HTS microarrays and macroscale constructs selected from these microarrays, and (3) to determine the potential of hMSC-laden constructs with HTS-identified compositions and mechanical stimulation regimes to induce cartilage regeneration in vivo. The orthopedic community would benefit from a better understanding of these chondroinductive microenvironments that will ultimately induce neo-tissue formation and will represent a viable alternative to current clinical therapies. While the ultimate objective of this research is to engineer clinically relevant articular cartilage therapies, this HTS can also be applicable to test
regeneration strategies for other tissues.
描述(由申请人提供):肌肉骨骼组织损伤仍然是骨科研究中的重大挑战,例如,目前有数百万患者遭受软骨损伤,相关的年度财务费用超过 1000 亿美元。有几种可行的临床选择。在这种情况下,人类间充质干细胞(hMSC)是软骨组织工程的一个有前途的细胞来源,因为它们能够分化软骨形成途径,可以以微创方式从骨髓中获得,并且很容易在培养物中生长。尽管 hMSC 的分化受到可溶性分子、不溶性生化信号和机械信号的调节,但机械负荷和生物材料信号的组合效应在很大程度上是未知的。中心假设是,在机械刺激下使用高通量系统(HTS)可用于阐明指导 hMSC 软骨形成分化的单一和协同微环境因素,从而在体外和临床相关的体内模型中进行功能工程软骨形成从 HTS 获得的信息将有助于开发具有增强软骨形成的宏观结构,并且这些结构的性能将通过治疗临界尺寸的关节在体内得到验证。这些目标将通过实现以下具体目标来实现:(1) 开发基于 HTS 水凝胶的三维 (3D) 组合微阵列,由不同的细胞外基质分子和生长因子,可以机械变形以模拟 hMSC 的软骨形成微环境,(2)定量评估 3D 组合 HTS 微阵列和选自这些微阵列的宏观构建体中 hMSC 的软骨形成分化反应,以及(3)确定具有 HTS 鉴定的成分和机械刺激方案的 hMSC 负载构建体可诱导体内软骨再生,骨科界将从中受益。更好地了解这些软骨诱导微环境,最终将诱导新组织形成,并将成为当前临床疗法的可行替代方案。虽然这项研究的最终目标是设计临床相关的关节软骨疗法,但该 HTS 也可用于测试。
其他组织的再生策略。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(4)
Jammed Micro-Flake Hydrogel for Four-Dimensional Living Cell Bioprinting.
- DOI:10.1002/adma.202109394
- 发表时间:2022-04
- 期刊:
- 影响因子:29.4
- 作者:Ding, Aixiang;Jeon, Oju;Cleveland, David;Gasvoda, Kaelyn L.;Wells, Derrick;Lee, Sang Jin;Alsberg, Eben
- 通讯作者:Alsberg, Eben
Spatial Micropatterning of Growth Factors in 3D Hydrogels for Location-Specific Regulation of Cellular Behaviors.
- DOI:10.1002/smll.201800579
- 发表时间:2018-06
- 期刊:
- 影响因子:0
- 作者:Jeon O;Lee K;Alsberg E
- 通讯作者:Alsberg E
Reversible dynamic mechanics of hydrogels for regulation of cellular behavior.
- DOI:10.1016/j.actbio.2021.09.032
- 发表时间:2021-12
- 期刊:
- 影响因子:9.7
- 作者:Jeon O;Kim TH;Alsberg E
- 通讯作者:Alsberg E
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eben Alsberg其他文献
Eben Alsberg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eben Alsberg', 18)}}的其他基金
Individual cell bioprinting to generate multi-tissue type condensations for osteochondral tissue regeneration
单个细胞生物打印可生成用于骨软骨组织再生的多组织类型浓缩物
- 批准号:
10659772 - 财政年份:2023
- 资助金额:
$ 40.83万 - 项目类别:
Multi-tissue type condensations for trachea tissue regeneration via individual cell bioprinting
通过单细胞生物打印进行气管组织再生的多组织类型浓缩
- 批准号:
10643041 - 财政年份:2023
- 资助金额:
$ 40.83万 - 项目类别:
Mechanosensitive synthetic cell-regulatable hydrogels for tissue engineering
用于组织工程的机械敏感合成细胞调节水凝胶
- 批准号:
10570918 - 财政年份:2022
- 资助金额:
$ 40.83万 - 项目类别:
Mechanosensitive synthetic cell-regulatable hydrogels for tissue engineering
用于组织工程的机械敏感合成细胞调节水凝胶
- 批准号:
10354662 - 财政年份:2022
- 资助金额:
$ 40.83万 - 项目类别:
Engineering a Self-assembled, multi-tissue Tracheal Replacement
设计自组装多组织气管置换术
- 批准号:
9923657 - 财政年份:2019
- 资助金额:
$ 40.83万 - 项目类别:
Engineering a Self-assembled, multi-tissue Tracheal Replacement
设计自组装多组织气管置换术
- 批准号:
9899066 - 财政年份:2019
- 资助金额:
$ 40.83万 - 项目类别:
Opposing RNAi Molecule Gradient Constructs to Repair Osteochondral Defects
相反的 RNAi 分子梯度构建修复骨软骨缺损
- 批准号:
9728716 - 财政年份:2019
- 资助金额:
$ 40.83万 - 项目类别:
Opposing RNAi Molecule Gradient Constructs to Repair Osteochondral Defects
相反的 RNAi 分子梯度构建修复骨软骨缺损
- 批准号:
10263140 - 财政年份:2019
- 资助金额:
$ 40.83万 - 项目类别:
Opposing RNAi molecule gradient constructs to repair osteochondral defects
相反的RNAi分子梯度构建修复骨软骨缺损
- 批准号:
9265388 - 财政年份:2016
- 资助金额:
$ 40.83万 - 项目类别:
High-Throughput Microenvironment Regulation for Chondrogenesis
软骨形成的高通量微环境调节
- 批准号:
8914310 - 财政年份:2015
- 资助金额:
$ 40.83万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 40.83万 - 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 40.83万 - 项目类别:
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
- 批准号:
10595404 - 财政年份:2023
- 资助金额:
$ 40.83万 - 项目类别:
Spatio-temporal mechanistic modeling of whole-cell tumor metabolism
全细胞肿瘤代谢的时空机制模型
- 批准号:
10645919 - 财政年份:2023
- 资助金额:
$ 40.83万 - 项目类别: