Developing and applying large-scale simulation approach to understand the mechanisms of kinesins' motilities along microtubules

开发和应用大规模模拟方法来了解驱动蛋白沿微管运动的机制

基本信息

  • 批准号:
    10261461
  • 负责人:
  • 金额:
    $ 37.75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-01 至 2023-07-31
  • 项目状态:
    已结题

项目摘要

Abstract: Anti-mitotic drugs are highly desirable chemotherapy drugs for cancer treatment. Traditional anti-mitotic drugs destroy microtubule dynamics by depolymerizing or stabilizing microtubules to kill the overactive cancer cells. Even though these anti-mitotic drugs have achieved great success, they face two significant issues: 1) Serious side effects; and 2) Strong drug resistance for some types of cancers. To overcome these two issues, kinesins are recently found to be ideal alternative drug targets. While microtubules provide the scaffold for mitosis, it is the interaction of kinesins with microtubule that is responsible for mitotic separation. Moreover, different types of kinesins are responsible for different microtubule functions, allowing for the possible design of drugs specific to mitosis with fewer side effects. Recent experimental works have been performed to reveal mechanisms of kinesin motility successfully. However, many kinesins’ mechanisms at the atomic level are still missing in current experimental approaches due to the limitations of resolutions, both in time and in length. Computational works can bridge the gap between atomic details and the resolutions of current experimental approaches. However, simulations for kinesins are extremely challenging due to the large size of kinesin and microtubule system. Based on fast improvements of algorithms in recent years, the PI will develop a large-scale simulation package that is capable of simulating large kinesin-microtubule complexes accurately. This package will be applied to reveal the important mechanisms for kinesins’ binding and motility features, which will shed light on kinesin targeting anti-mitotic drug design. The PI has extensive experience of software developments in the areas of protein-protein interactions, electrostatic calculations, binding energy calculations, pKa calculations, and large-scale simulations. Besides, the PI also has gained rich experience of studying kinesins and other molecular motors. The PI’s recent computational woks have revealed that the interaction between kinesin motor domains and the microtubule is an important factor for kinesin’s motility features. And disease mutations on kinesins show strong tendency of electrostatic force changes between kinesins and microtubules. Therefore, investigating kinesins using accurate and comprehensive computational approaches is a very promising direction to understand the mechanisms of kinesins and discover new kinesin targeting anti-mitotic drugs. Besides mitotic kinesins, mutations and defects on other kinesins are also responsible for neurological disorders and serious diseases such as Alzheimer, Huntington, Parkinson disease and many others. The large-scale simulation package developed in this work will also help to discover novel treatments of those diseases. Furthermore, this package will solve the scale limitation issue of traditional simulation packages and therefore can be widely used to study complex biological systems, such as the dynein-microtubule complex, viral capsid assembly, G-proteins systems on the membrane, and many others.
抽象的: 抗有丝分裂药物是传统抗有丝分裂药物非常理想的化疗药物。 通过药物解聚或稳定微管来破坏微管动力学,从而杀死过度活跃的癌症 尽管这些抗有丝分裂药物取得了巨大成功,但它们面临两个重大问题:1) 严重的副作用;以及2)对某些类型的癌症有很强的耐药性为了克服这两个问题, 最近发现驱动蛋白是理想的替代药物靶点,而微管为有丝分裂提供了支架。 驱动蛋白与微管的相互作用负责有丝分裂分离。 不同类型的驱动蛋白负责不同的微管功能,从而为药物的设计提供了可能 最近进行的实验工作揭示了有丝分裂的特异性,且副作用较少。 然而,许多驱动蛋白在原子水平上的机制仍然存在。 由于时间和长度上分辨率的限制,当前的实验方法中缺失了这一点。 计算工作可以弥合原子细节与当前实验分辨率之间的差距 然而,由于驱动蛋白尺寸较大,对驱动蛋白的模拟极具挑战性。 基于近年来算法的快速改进,PI将开发大规模的微管系统。 能够准确模拟大型驱动蛋白-微管复合物的模拟包。 将用于揭示驱动蛋白结合和运动特征的重要机制,这将揭示 PI 在驱动蛋白靶向抗有丝分裂药物设计方面拥有丰富的软件开发经验。 蛋白质-蛋白质相互作用、静电计算、结合能计算、pKa 计算等领域 此外,PI还积累了丰富的驱动蛋白等研究经验。 PI 最近的计算工作揭示了驱动蛋白马达之间的相互作用。 结构域和微管是驱动蛋白运动特征和疾病突变的重要因素。 驱动蛋白与微管之间表现出强烈的静电力变化倾向。 使用准确且全面的计算方法研究驱动蛋白是一个非常有前途的方向 了解驱动蛋白的机制并发现除有丝分裂药物外的新驱动蛋白靶向抗有丝分裂药物。 驱动蛋白、其他驱动蛋白的突变和缺陷也会导致神经系统疾病和严重的 阿尔茨海默病、亨廷顿病、帕金森病等多种疾病的大规模模拟。 这项工作中开发的软件包也将有助于发现这些疾病的新疗法。 包将解决传统仿真包的规模限制问题,因此可以广泛使用 研究复杂的生物系统,例如动力蛋白-微管复合物、病毒衣壳组装、G 蛋白 膜上的系统,等等。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lin Li其他文献

Solutions to Kirchhoff equations with combined nonlinearities
具有组合非线性的基尔霍夫方程的解
Multifractal analysis of diversity scaling laws in a subtropical forest
亚热带森林多样性尺度规律的多重分形分析
  • DOI:
    10.1016/j.ecocom.2011.10.004
  • 发表时间:
    2013-03
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Shi-Guang Wei;Lin Li;Zhong-Liang Huang;Wan-Hui Ye;Gui-Quan Gong;Xiao-Yong Zhou;Ju-Yu Lian
  • 通讯作者:
    Ju-Yu Lian

Lin Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lin Li', 18)}}的其他基金

New approach for identification pHFO networks to predict epileptogenesis
识别 pHFO 网络以预测癫痫发生的新方法
  • 批准号:
    10665791
  • 财政年份:
    2022
  • 资助金额:
    $ 37.75万
  • 项目类别:
Developing and applying large-scale simulation approach to understand the mechanisms of kinesins' motilities along microtubules
开发和应用大规模模拟方法来了解驱动蛋白沿微管运动的机制
  • 批准号:
    9983112
  • 财政年份:
    2019
  • 资助金额:
    $ 37.75万
  • 项目类别:
Developing and applying large-scale simulation approach to understand the mechanisms of kinesins' motilities along microtubules
开发和应用大规模模拟方法来了解驱动蛋白沿微管运动的机制
  • 批准号:
    10459484
  • 财政年份:
    2019
  • 资助金额:
    $ 37.75万
  • 项目类别:

相似国自然基金

基于神经退行性疾病前瞻性队列的新烟碱类杀虫剂暴露对阿尔茨海默病的影响及作用机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
基于miRNA介导ceRNA网络调控作用的防治阿尔茨海默病及认知障碍相关疾病药物的发现研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
LMTK1调控核内体转运介导阿尔茨海默病神经元Reserve机制研究
  • 批准号:
    81903703
  • 批准年份:
    2019
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
基于自组装多肽纳米探针检测蛋白标志物用于阿尔茨海默病精准诊断的研究
  • 批准号:
    31900984
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
靶向干预CD33/Aβ相互作用改善小胶质细胞功能延缓AD病理进程
  • 批准号:
    81901072
  • 批准年份:
    2019
  • 资助金额:
    20.5 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
  • 批准号:
    10462257
  • 财政年份:
    2023
  • 资助金额:
    $ 37.75万
  • 项目类别:
A software tool to facilitate variable-level equivalency and harmonization in research data: Leveraging the NIH Common Data Elements Repository to link concepts and measures in an open format
促进研究数据中变量级别等效性和协调性的软件工具:利用 NIH 通用数据元素存储库以开放格式链接概念和测量
  • 批准号:
    10821517
  • 财政年份:
    2023
  • 资助金额:
    $ 37.75万
  • 项目类别:
Clinical Decision Support System for Early Detection of Cognitive Decline Using Electronic Health Records and Deep Learning
利用电子健康记录和深度学习早期检测认知衰退的临床决策支持系统
  • 批准号:
    10603902
  • 财政年份:
    2023
  • 资助金额:
    $ 37.75万
  • 项目类别:
Brain Digital Slide Archive: An Open Source Platform for data sharing and analysis of digital neuropathology
Brain Digital Slide Archive:数字神经病理学数据共享和分析的开源平台
  • 批准号:
    10735564
  • 财政年份:
    2023
  • 资助金额:
    $ 37.75万
  • 项目类别:
SCH: Dementia Early Detection for Under-represented Populations via Fair Multimodal Self-Supervised Learning
SCH:通过公平的多模式自我监督学习对代表性不足的人群进行痴呆症早期检测
  • 批准号:
    10816864
  • 财政年份:
    2023
  • 资助金额:
    $ 37.75万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了