New approach for identification pHFO networks to predict epileptogenesis
识别 pHFO 网络以预测癫痫发生的新方法
基本信息
- 批准号:10665791
- 负责人:
- 金额:$ 18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-15 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:AftercareAnimal ModelAnimalsAntiepileptogenicAreaBiological MarkersBrainBrain DiseasesCharacteristicsChronicClinicalClinical ResearchComputational algorithmCouplingDataDevelopmentEarly DiagnosisEffectivenessElectrophysiology (science)ElementsEntropyEpilepsyEpileptogenesisEventExhibitsFutureGoalsGraphHigh Frequency OscillationInterventionIntractable EpilepsyInvestigationKainic AcidKnowledgeLesionMeasuresMethodsModelingNeocortexNetwork-basedNeuronsOutcome StudyPathologicPathologyPatientsPhenotypePopulationPreventionProbabilityProcessPropertyRattusResearchResolutionSeizuresSignal TransductionSiliconSpatial DistributionStatus EpilepticusTechniquesTemporal Lobe EpilepsyTestingTrainingTranslatingUpdatealgorithm developmentbiomaterial compatibilitycomputerized toolsdesigneffectiveness evaluationexperimental studygraph theoryneocorticalnervous system disordernetwork architectureneuralnovelnovel strategiespreventpreventable epilepsysoftware developmentsupport vector machinesurgery outcome
项目摘要
PROJECT SUMMARY
Epilepsy is among the most common serious neurological disorders, and about 40% of epilepsy patients do not
respond to existing treatment. Clinically, the prolonged, refractory epilepsy with negative surgical outcomes is
often associated with distributed epilepsy onset rather than a local epileptogenic zone. Understanding the
epilepsy as a large-scale brain network abnormality enables the development of new treatment options and
research directions. At present, the majority of research related to analysis of the epileptic network has been
focused on the ictal period, while few have been devoted to the analysis of the earlier stages of epileptogenesis
(latent period). Investigating the brain network properties of epileptogenesis is as important and can help
develop antiepileptogenic interventions for epilepsy prevention and cure. Early in our experiments, we
discovered pathological high-frequency oscillations (pHFOs), which are reliable biomarkers of epileptogenesis.
They are generated by clusters of pathologically interconnected neurons (PIN-clusters) and reflect bursts of
population spikes. Recent updates in the animal models of chronic epilepsy evidenced the spatially distributed
pHFO events, which implies the development of large-scale PIN-cluster networks during epileptogenesis. It is
critical to study the network topology and characteristics of PIN-cluster-formed epileptogenic networks in
order to further understand the underlying mechanisms of epileptogenesis.
To fulfill this gap, the present study plan is to explore pHFO-based networks using the Kainic Acid (KA)-
induced status epilepticus (SE) model of epileptogenesis. We hypothesize that epileptogenesis after SE is
dependent upon the formation of large-scale PIN-cluster networks that is expressed by the spatial occurrence
and temporal coupling of pHFOs. Combining the biocompatible, organic–material based neural interface array
(NeuroGrid) with multichannel silicon probes, we aim to identify the spatial and temporal profiles of pHFOs
(Aim1). Using the advanced computational algorithms such as graph theory analysis and Shannon Entropy
(SE), we propose to investigate the causal relationship and characteristics of the pHFO-based epileptogenic
networks (Aim2). The outcome of this study will assess the robustness of novel network-based recording design
and algorithm development. It will also determine whether the pHFO-derived network parameters are a
reliable biomarker of epileptogenesis. The future plans are to translate the pHFO-network concept and
computational tools into the clinical study of epilepsy. This approach may open a new direction to the
prevention of epilepsy development and cure epilepsy.
项目概要
癫痫是最常见的严重神经系统疾病之一,约 40% 的癫痫患者不患有癫痫症。
临床上,手术结果阴性的长期难治性癫痫是有效的。
通常与分布式癫痫发作相关,而不是局部致癫痫区域。
癫痫作为一种大规模的脑网络异常使得新的治疗方案的开发成为可能
目前,大部分研究都与癫痫网络的分析有关。
重点关注发作期,而很少致力于分析癫痫发生的早期阶段
(潜伏期)研究癫痫发生的大脑网络特性同样重要并且可以提供帮助。
在我们的实验早期,我们开发了用于癫痫预防和治疗的抗癫痫干预措施。
发现了病理性高频振荡(pHFO),这是癫痫发生的可靠生物标志物。
它们是由病理性互连的神经元簇(PIN 簇)生成的,反映了
慢性癫痫动物模型的最新更新证明了其空间分布。
pHFO 事件,这意味着癫痫发生期间大规模 PIN 簇网络的发展。
对于研究 PIN 簇形成的致癫痫网络的网络拓扑和特征至关重要
为了进一步了解癫痫发生的潜在机制。
为了填补这一空白,目前的研究计划是利用红藻氨酸 (KA) 探索基于 pHFO 的网络 -
癫痫发生的诱发性癫痫持续状态(SE)模型我们捕获了 SE 后的癫痫发生。
依赖于大规模 PIN 簇网络的形成,该网络由空间发生表示
和 pHFO 的时间耦合结合生物相容性、有机材料的神经接口阵列。
(NeuroGrid) 使用多通道硅探针,我们的目标是识别 pHFO 的空间和时间分布
(目标1)。使用图论分析和香农熵等先进计算算法。
(SE),我们建议研究基于 pHFO 的致痫的因果关系和特征
本研究的结果将评估基于网络的新型记录设计的稳健性。
它还将确定 pHFO 导出的网络参数是否是一个。
癫痫发生的可靠生物标志物。未来的计划是转化 pHFO 网络概念和
这种方法可能会为癫痫的临床研究开辟一个新的方向。
预防癫痫的发展和治疗癫痫。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Intracranial electrophysiological recordings on a swine model of mesial temporal lobe epilepsy.
- DOI:10.3389/fneur.2023.1077702
- 发表时间:2023
- 期刊:
- 影响因子:3.4
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lin Li其他文献
Solutions to Kirchhoff equations with combined nonlinearities
具有组合非线性的基尔霍夫方程的解
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0.7
- 作者:
Ling Ding;Lin Li;Jingling Zhang - 通讯作者:
Jingling Zhang
Multifractal analysis of diversity scaling laws in a subtropical forest
亚热带森林多样性尺度规律的多重分形分析
- DOI:
10.1016/j.ecocom.2011.10.004 - 发表时间:
2013-03 - 期刊:
- 影响因子:3.5
- 作者:
Shi-Guang Wei;Lin Li;Zhong-Liang Huang;Wan-Hui Ye;Gui-Quan Gong;Xiao-Yong Zhou;Ju-Yu Lian - 通讯作者:
Ju-Yu Lian
Lin Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lin Li', 18)}}的其他基金
Developing and applying large-scale simulation approach to understand the mechanisms of kinesins' motilities along microtubules
开发和应用大规模模拟方法来了解驱动蛋白沿微管运动的机制
- 批准号:
9983112 - 财政年份:2019
- 资助金额:
$ 18万 - 项目类别:
Developing and applying large-scale simulation approach to understand the mechanisms of kinesins' motilities along microtubules
开发和应用大规模模拟方法来了解驱动蛋白沿微管运动的机制
- 批准号:
10459484 - 财政年份:2019
- 资助金额:
$ 18万 - 项目类别:
Developing and applying large-scale simulation approach to understand the mechanisms of kinesins' motilities along microtubules
开发和应用大规模模拟方法来了解驱动蛋白沿微管运动的机制
- 批准号:
10261461 - 财政年份:2019
- 资助金额:
$ 18万 - 项目类别:
相似国自然基金
髋关节撞击综合征过度运动及机械刺激动物模型建立与相关致病机制研究
- 批准号:82372496
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
基于中医经典名方干预效应差异的非酒精性脂肪性肝病动物模型证候判别研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
利用肝癌动物模型开展化学可控的在体基因编辑体系的研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
雌激素抑制髓系白血病动物模型中粒细胞异常增生的机制
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
无菌动物模型与单细胞拉曼技术结合的猴与人自闭症靶标菌筛选及其机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Effect of High Salt Diet on Proximal Tubular Sodium Reabsorption, Metabolic Stress, and Injury
高盐饮食对近端肾小管钠重吸收、代谢应激和损伤的影响
- 批准号:
10908784 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Resources, Workforce Development, and Animal Models for the Rutgers RBL
罗格斯大学 RBL 的资源、劳动力发展和动物模型
- 批准号:
10793863 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Safety and Efficacy of Mesenchymal Stem Cells in the Treatment of Chronic Pancreatitis and Its Associated Pain
间充质干细胞治疗慢性胰腺炎及其相关疼痛的安全性和有效性
- 批准号:
10721284 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Chromatin regulators of stemness and therapy resistance in rhabdomyosarcoma
横纹肌肉瘤干性和治疗耐药性的染色质调节因子
- 批准号:
10622041 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Intensive cholesterol-lowering intervention and anti-tumor immunity modeled in prostate cancer
以前列腺癌为模型的强化降胆固醇干预和抗肿瘤免疫
- 批准号:
10802975 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别: