Chromatin regulators of stemness and therapy resistance in rhabdomyosarcoma
横纹肌肉瘤干性和治疗耐药性的染色质调节因子
基本信息
- 批准号:10622041
- 负责人:
- 金额:$ 17.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:AffectAftercareAnimal ModelBar CodesBindingBiological AssayCatalytic DomainCell CycleCell Differentiation processCell LineCell LineageCell ProliferationCellsChemotherapy and/or radiationChildhood Soft Tissue SarcomaChromatinClinicCollaborationsColony-Forming Units AssayComplexCyclophosphamideDactinomycinEZH2 geneEpigenetic ProcessEvolutionFrequenciesGene ExpressionGenetic TranscriptionGoalsHeterogeneityHistone H3HistonesImageImmuneImpairmentInter-tumoral heterogeneityKnowledgeLysineMalignant NeoplasmsMesenchymalMessenger RNAMethylationModelingModificationMolecularMusMuscleMuscle CellsMuscle FibersMutateMyoblastsNOTCH3 geneNatureNeoplasm MetastasisOperative Surgical ProceduresPathway interactionsPatient-Focused OutcomesPatientsPediatric NeoplasmPharmaceutical PreparationsPhenotypePlayPolycombProcessPrognosisProliferatingProteinsRNARadiationRecurrenceRecurrent tumorRelapseRepressor ProteinsResearchResearch PersonnelResistanceResolutionRhabdomyosarcomaRoleSamplingStressSurvival RateTailTechniquesTestingTimeTranscriptTranscription CoactivatorTransgenic AnimalsUndifferentiatedUnited StatesVincristineWorkXCL1 geneXenograft procedureZebrafishcancer cellcell killingchemotherapychildhood sarcomacostdeep sequencingdrug testingdynamical evolutiongene repressionhistone methylationimprovedin vivoinhibitorinnovationirradiationknock-downmouse modelmultiple omicsmyocyte-specific enhancer-binding-factor 2Cneoplastic cellnew therapeutic targetnovelnovel therapeuticspatient derived xenograft modelpatient subsetspharmacologicpre-clinicalpreclinical efficacyprofiles in patientsprogenitorprogramssingle-cell RNA sequencingstandard carestemstemnesssynergismtherapy resistanttranscription factortranscriptomicstumortumor growthtumor heterogeneity
项目摘要
PROJECT SUMMARY / ABSTRACT
Rhabdomyosarcomas (RMS) are the most common childhood soft-tissue sarcomas affecting hundreds of
patients in the United States annually. Current standard treatments for rhabdomyosarcoma (RMS) patients
include chemotherapy, surgery, and /or radiation. However, even with these combinations of therapeis,
significant subsets of patients suffer tumor recurrence, relapse, and metastasis, associated with extremely worse
prognosis and dismal 5-year survival rate. This remains the major hurdle to improve the patient outcomes with
rhabdomyosarcomas. To better understand the mechanisms such as tumor-propagating cells, critical molecular
regulators that drives therapy resistance and tumor-relapse in RMS, researchers has employed RMS cell lines,
transgenic animal models, and xenograft studies to study the potential tumor-propagating cells (TPCs) for RMS.
Yet, little is known about the tumor heterogeneity and cancer cell evolution dynamics in RMS. To dissect the
inter-tumoral and intra-tumoral heterogeneity, I have used the single-cell transcriptomics to profile patient-derived
samples of RMS. I uncovered distinct cell states in RMS tumors, including proliferation and a mesenchymal-like
subpopulations that have higher TPC potential, whereas the differentiated muscle subpopulation that barely
transits towards other cell states. With this knowledge, and the innovation of barcode tracing techniques, I
propose to dissect molecular mechanisms that contribute to cell state transitions, and concurrently assess the
cell phenotypes changes along with its transcripts, proteins, and epigenetics alterations. One class of important
and challenging molecules in regulating cancer stemness, evolution post therapies is chromatin regulators, which
requires deep sequencing in limited cell line models. The technical innovation of single-cell multiomics, including
single-cell RNA, single-cell ATAC, single-cell CUT&Tag, and cell lineage barcode tracing largely decrease the
cost and time needed to profile cancer cell evolution along with epigenetic modifications at single-cell levels.
With effective collaboration with computational biologists, I hypothesize that EZH2 and its catalytic product
H3K27me3 lock RMS cells in the proliferative cell state and inhibit their transition into other differentiated states.
To test this hypothesis, I will first assess the role of EZH2 in regulating cell state transitions with barcode tracing
and functional stem assays in the context of EZH2 knockdown (Aim 1). Independently, I will also profile the direct
targets of EZH2 and histone H3 lysine 27 trimethylation by performing single-cell CUT&Tag, and interrogate
mechanism that controls cell state transition (Aim 2). In addition, I will also assess the EZH2 inhibitors in
collaboration with chemotherapy and radiation utilizing the unique immune-compromised zebrafish models along
with cell line and mouse xenograft studies (Aim 3). The goals of the proposed research are to investigate
chromatin regulators in rhabdomyosarcoma samples while also acknowledging the tumor-heterogeneity and cell
plasticity in cell state transitions. By achieving these aims, I will illustrate a comprehensive mechanism as to how
RMS tumors evolve and how chromatin regulators play critical roles in controlling this process.
项目概要/摘要
横纹肌肉瘤 (RMS) 是最常见的儿童软组织肉瘤,影响数百名儿童
美国每年都有患者。横纹肌肉瘤 (RMS) 患者的现行标准治疗
包括化疗、手术和/或放疗。然而,即使采用这些治疗组合,
相当一部分患者患有肿瘤复发、复发和转移,与病情极其恶化有关
预后和惨淡的 5 年生存率。这仍然是改善患者治疗效果的主要障碍
横纹肌肉瘤。为了更好地理解肿瘤增殖细胞、关键分子等机制
导致 RMS 治疗耐药和肿瘤复发的调节因子,研究人员采用了 RMS 细胞系,
转基因动物模型和异种移植研究,以研究 RMS 的潜在肿瘤增殖细胞 (TPC)。
然而,人们对 RMS 中的肿瘤异质性和癌细胞进化动态知之甚少。剖析
肿瘤间和肿瘤内异质性,我使用单细胞转录组学来分析患者来源的异质性
RMS 样本。我发现了 RMS 肿瘤中不同的细胞状态,包括增殖和间质样细胞状态
具有较高 TPC 潜力的亚群,而几乎没有分化的肌肉亚群
过渡到其他细胞状态。凭借这些知识以及条形码追踪技术的创新,我
提议剖析有助于细胞状态转变的分子机制,并同时评估
细胞表型随着其转录物、蛋白质和表观遗传学的改变而变化。一类重要的
在调节癌症干细胞性方面具有挑战性的分子是染色质调节剂,它是治疗后的进化
需要在有限的细胞系模型中进行深度测序。单细胞多组学的技术创新,包括
单细胞RNA、单细胞ATAC、单细胞CUT&Tag和细胞谱系条形码追踪大大降低了
分析癌细胞进化以及单细胞水平的表观遗传修饰所需的成本和时间。
通过与计算生物学家的有效合作,我假设 EZH2 及其催化产物
H3K27me3 将 RMS 细胞锁定在增殖细胞状态并抑制它们向其他分化状态的转变。
为了验证这个假设,我将首先评估 EZH2 在通过条形码追踪调节细胞状态转换中的作用
以及 EZH2 敲低背景下的功能性干分析(目标 1)。独立地,我还将介绍直接
通过执行单细胞 CUT&Tag 来确定 EZH2 和组蛋白 H3 赖氨酸 27 三甲基化的靶标,并询问
控制细胞状态转换的机制(目标 2)。此外,我还将评估 EZH2 抑制剂
利用独特的免疫受损斑马鱼模型与化疗和放疗合作
细胞系和小鼠异种移植研究(目标 3)。拟议研究的目标是调查
横纹肌肉瘤样本中的染色质调节因子,同时也承认肿瘤异质性和细胞
细胞状态转变的可塑性。通过实现这些目标,我将说明一个全面的机制
RMS 肿瘤的进化以及染色质调节因子如何在控制这一过程中发挥关键作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yun Wei其他文献
Yun Wei的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Temporospatial Single-Cell Characterization of Angiogenesis and Myocardial Regeneration in Small and Large Mammals
小型和大型哺乳动物血管生成和心肌再生的时空单细胞表征
- 批准号:
10751870 - 财政年份:2023
- 资助金额:
$ 17.82万 - 项目类别:
Germline Genetic Modifiers of Radiation Response
辐射反应的种系遗传修饰剂
- 批准号:
10741022 - 财政年份:2023
- 资助金额:
$ 17.82万 - 项目类别:
Development of an endometrial ablation drug-device combination to treat heavy menstrual bleeding
开发子宫内膜消融药物装置组合来治疗月经出血
- 批准号:
10759501 - 财政年份:2023
- 资助金额:
$ 17.82万 - 项目类别:
"Novel Mouse Models for Quantitative Understanding of Baseline and Therapy-Driven Evolution of Prostate Cancer Metastasis"
“用于定量了解前列腺癌转移的基线和治疗驱动演变的新型小鼠模型”
- 批准号:
10660349 - 财政年份:2023
- 资助金额:
$ 17.82万 - 项目类别:
Extratumoral biological determinants that decrease survival in older adults with glioblastoma
降低老年胶质母细胞瘤患者生存率的肿瘤外生物决定因素
- 批准号:
10741380 - 财政年份:2023
- 资助金额:
$ 17.82万 - 项目类别: