A Microphysiological Mimicry of Human Lung-Bone Marrow Organ-Organ Crosstalk On-a-Chip

芯片上人体肺-骨髓器官-器官串扰的微生理模拟

基本信息

项目摘要

PROJECT SUMMARY. Several new viral respiratory tract infectious diseases with epidemic potential that threaten global health security have emerged in the past 20 years. Influenza A viruses (IAVs) comprise 50% of the emerging respiratory viruses and can cause substantial morbidity and mortality. IAVs can infect a diversity of avian and mammalian species, including humans, and have the remarkable capacity to evolve and adapt to new hosts. Despite the tremendous progress made in virology and epidemiology, which subtype or strain of IAV will cause the next outbreak remains unpredictable. Importantly, there is no clinically simulating, pathophysiologically relevant, and readily available in vitro multi-organ system for predicting the pathogenicity of emerging and re-emerging influenza viruses in humans. Recent compelling evidence have revealed opposing roles for two major classes of bone marrow (BM)-produced innate immune cells in shaping the outcome of IAV infection, with neutrophils offering protection and increase in circulating monocytes being associated with increased pathology. Thus, selective mobilization of either of these two distinct cell types in response to pulmonary infection with IAV can indirectly reveal potential pathogenicity of a given viral strain. The overarching goal of this project is to develop a highly innovative, reductionist, yet advanced and complex, physiologically relevant in vitro model of influenza infection in humans utilizing Organ-on-Chip technology in order to predict virulence and infectivity of different IAV strains, by reproducing clinically and in vivo-observed immunological correlates of infection severity. More specifically, we will engineer a first-in-kind fluidically integrated multi- organ system that recreates BM-lung axis, using primary human-derived cells, for real-time analysis of inflammation and leukocyte mobilization in response to influenza challenge. Our central hypothesis is that this dynamic living microsystem can recapitulate differential immune cell mobilization and tissue pathology in response to high-pathogenicity vs. low-pathogenicity IAV infections in vitro. To address the hypothesis, we propose the following specific aims: (1) to engineer a living and hematopoietically active human BM-on-a-Chip and microfluidically link it to a human Lung Small Airway-on-a-Chip that our team has previously developed and characterize homeostatic physiology and organ-organ crosstalk; and (3) to challenge the BM-Lung microsystem with airborne IAVs under rhythmic breathing and reproduce differential leukocyte mobilization and tissue damage in response to distinctly pathogenic viral strains. Such a novel platform holds great potential in emulating and predicting pathogenicity of IAVs (e.g., during outbreaks, pandemics or when presence of a highly virulent strain is speculated), utilizing human cells isolated from desired donor/patient populations, and without needing to adapt the virus for host (as required for some animal studies). In addition, it can considerably accelerate drug development studies by enabling personalized drug efficacy testing and identification of new therapeutic targets.
项目摘要。 几种具有流行潜力的新型病毒性呼吸道传染病威胁全球卫生安全 是近20年来出现的。甲型流感病毒 (IAV) 占新出现的呼吸道病毒的 50%,可 导致大量的发病率和死亡率。 IAV 可感染多种鸟类和哺乳动物物种,包括 人类,具有非凡的进化和适应新宿主的能力。尽管取得了巨大进步 就病毒学和流行病学而言,IAV 的哪种亚型或毒株将导致下一次爆发仍然无法预测。 重要的是,目前还没有临床模拟的、病理生理学相关的、容易获得的体外模型。 用于预测人类中新出现和重新出现的流感病毒的致病性的多器官系统。 最近令人信服的证据揭示了骨髓 (BM) 产生的两种主要先天性物质的相反作用 免疫细胞影响 IAV 感染的结果,其中中性粒细胞提供保护并增加循环 单核细胞与病理增加有关。因此,这两种不同细胞的选择性动员 对 IAV 肺部感染的反应类型可以间接揭示特定病毒的潜在致病性 拉紧。该项目的总体目标是开发一种高度创新、简化但先进且复杂的、 利用器官芯片技术建立人类流感感染的生理相关体外模型 通过复制临床和体内观察到的免疫学结果,预测不同 IAV 毒株的毒力和传染性 感染严重程度的相关性。更具体地说,我们将设计一种同类首创的流体集成多 使用原代人源细胞重建骨髓-肺轴的器官系统,用于实时分析 应对流感挑战的炎症和白细胞动员。我们的中心假设是,这 动态活体微系统可以重现差异免疫细胞动员和组织病理学 体外对高致病性与低致病性 IAV 感染的反应。为了解决这个假设,我们 提出以下具体目标:(1)设计活的、具有造血活性的人类片上骨髓; 通过微流体将其与我们团队之前开发的人类肺小气道芯片连接起来 表征稳态生理学和器官间串扰; (3) 挑战 BM-Lung 微系统 空气中的 IAV 在有节奏的呼吸下重现差异性白细胞动员和组织损伤 对明显致病性病毒株的反应。这种新颖的平台在模拟和预测方面具有巨大的潜力 IAV 的致病性(例如,在爆发、大流行期间或推测存在高毒力菌株时), 利用从所需的供体/患者群体中分离出的人类细胞,并且无需使病毒适应宿主 (根据某些动物研究的要求)。此外,它还可以通过启用 个性化药物疗效测试和新治疗靶点的识别。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kambez Hajipouran Benam其他文献

Kambez Hajipouran Benam的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kambez Hajipouran Benam', 18)}}的其他基金

A Microphysiological Mimicry of Human Lung-Bone Marrow Organ-Organ Crosstalk On-a-Chip
芯片上人体肺-骨髓器官-器官串扰的微生理模拟
  • 批准号:
    10468736
  • 财政年份:
    2021
  • 资助金额:
    $ 38.96万
  • 项目类别:
Emulating Immune Dysregulation by Trisomy 21 in a Multi-Organ-on-a-Chip System
在多器官芯片系统中模拟 21 三体的免疫失调
  • 批准号:
    10292703
  • 财政年份:
    2021
  • 资助金额:
    $ 38.96万
  • 项目类别:
A Microphysiological Mimicry of Human Lung-Bone Marrow Organ-Organ Crosstalk On-a-Chip
芯片上人体肺-骨髓器官-器官串扰的微生理模拟
  • 批准号:
    10378933
  • 财政年份:
    2021
  • 资助金额:
    $ 38.96万
  • 项目类别:
An Advanced Lung Organomimetic to Reproduce Human Airway Pathophysiology
重现人类气道病理生理学的先进肺器官模拟
  • 批准号:
    9766131
  • 财政年份:
    2019
  • 资助金额:
    $ 38.96万
  • 项目类别:
A Microphysiological Mimicry of Human Lung-Bone Marrow Organ-Organ Crosstalk On-a-Chip
芯片上人体肺-骨髓器官-器官串扰的微生理模拟
  • 批准号:
    10019354
  • 财政年份:
    2019
  • 资助金额:
    $ 38.96万
  • 项目类别:

相似国自然基金

时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

Climate Change Effects on Pregnancy via a Traditional Food
气候变化通过传统食物对怀孕的影响
  • 批准号:
    10822202
  • 财政年份:
    2024
  • 资助金额:
    $ 38.96万
  • 项目类别:
Developing Real-world Understanding of Medical Music therapy using the Electronic Health Record (DRUMMER)
使用电子健康记录 (DRUMMER) 培养对医学音乐治疗的真实理解
  • 批准号:
    10748859
  • 财政年份:
    2024
  • 资助金额:
    $ 38.96万
  • 项目类别:
Targeting Alcohol-Opioid Co-Use Among Young Adults Using a Novel MHealth Intervention
使用新型 MHealth 干预措施针对年轻人中酒精与阿片类药物的同时使用
  • 批准号:
    10456380
  • 财政年份:
    2023
  • 资助金额:
    $ 38.96万
  • 项目类别:
Immunomodulatory ligand B7-1 targets p75 neurotrophin receptor in neurodegeneration
免疫调节配体 B7-1 在神经变性中靶向 p75 神经营养蛋白受体
  • 批准号:
    10660332
  • 财政年份:
    2023
  • 资助金额:
    $ 38.96万
  • 项目类别:
Mixed methods examination of warning signs within 24 hours of suicide attempt in hospitalized adults
住院成人自杀未遂 24 小时内警告信号的混合方法检查
  • 批准号:
    10710712
  • 财政年份:
    2023
  • 资助金额:
    $ 38.96万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了