Emulating Immune Dysregulation by Trisomy 21 in a Multi-Organ-on-a-Chip System
在多器官芯片系统中模拟 21 三体的免疫失调
基本信息
- 批准号:10292703
- 负责人:
- 金额:$ 210.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-20 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAcuteAdultAffectAnimalsArchitectureBenchmarkingBiochemical GeneticsBiologicalBiologyBiomimeticsBiopsyBloodBlood VesselsBone MarrowCell Culture TechniquesCell Differentiation processCellsChemicalsChromosome 21Chromosome abnormalityClinicalClinical InvestigatorCollaborationsCuesDataDevelopmentDevicesDimensionsDown SyndromeEndothelial CellsEndotheliumEngineeringEnvironmental ExposureEpithelial CellsExhibitsExposure toFutureGenetic EngineeringGenetic MaterialsGoalsHematologyHematopoieticHematopoietic stem cellsHomeostasisHumanHuman ChromosomesHyperactivityHypersensitivityImmuneImmune responseImmunobiologyIn VitroIndividualInfectionInflammationInhalationInnate Immune ResponseInterferonsInternationalKnowledgeLaboratoriesLeukocytesLifeLigandsLinkLungLung diseasesLung infectionsMechanicsMediatingMediator of activation proteinMetabolicMethodsMicrofluidic MicrochipsMicrofluidicsModelingMolecularMorbidity - disease rateMusMutateMyelogenousOrganOrgan ModelPathologyPathway interactionsPerfusionPhysiologicalPhysiologyPoly I-CProtocols documentationRecurrenceReportingResolutionRespiration DisordersRespiratory Tract InfectionsSamplingSignal TransductionSmokeStructure of parenchyma of lungSyndromeSystemTLR3 geneTechnologyTherapeuticTimeTissue SampleTissuesTranslationsValidationVascular EndotheliumVirionVirus DiseasesWorkairway epitheliumairway inflammationbasehuman stem cellshuman tissueimmune activationin vivoinduced pluripotent stem cellinfluenza infectioninfluenzavirusinnovationintercellular communicationlung developmentlung injurymicrochipmicrosystemsmigrationmodel buildingmortalitymouse modelorgan on a chipreal-time imagesreconstitutionrespiratory pathogenresponsestem cell biologystem cell modelstem cellstranslational impacttwo-dimensional
项目摘要
Trisomy 21 (T21) is the molecular cause of Oown syndrome (OS), the most common chromosomal
abnormality in humans worldwide. Lung disorders represent an important cause of morbidity and
mortality in people with OS. Recurrent respiratory infections are particularly common in these
individuals and are often life-threatening. However, despite recent studies reporting immune
dysregulation and interferon hyperactivity in individuals with OS, there is a critical gap in our
understanding on how extra genetic material from chromosome 21 influences homeostatic immune
activity of the lung, and innate immune activation and mobilization of myeloid leukocytes, which
are key mediators of acute immune response, to respiratory pathogens. Organs-on-chips are
biomimetic, microfluidic, cell culture devices created with microchip manufacturing methods that
contain continuously perfused hollow microchannels inhabited by living tissue cells arranged to
simulate organ-level physiology. By recapitulating the multicellular architectures, tissue-tissue
interfaces, chemical gradients, mechanical cues, and vascular perfusion of the body, these devices
produce levels of tissue and organ functionality not possible with conventional two- dimensional or
three-dimensional culture systems. They also enable high-resolution, real-time imaging and in vitro
analysis of biochemical, genetic and metabolic activities of living cells in a functional tissue
and organ context. The overarching goal of this project is to apply microengineering principles of
organ-on-chip technology and develop a highly innovative and advanced, physiologically relevant
model of organ-organ crosstalk to delineate impact of OS on homeostatic physiology of the lung and
emulate clinically observed immune dysregulation due to T21. For this, we will create a
microfluidically integrated murine multi-organ system that reproduces bone marrow (BM)-lung axis,
using primary cells isolated from wild-type (WT) and Op(16)1/Yey mice (a murine model of OS). In
parallel, to enable eventual translation of findings to humans, we will focus part of our efforts
in generating human lung airway epithelia, vascular endothelium and hematopoietic stem cells from
induced pluripotent stem cells of healthy subjects and individuals with OS to recreate Lung and BM
tissue in the integrated multi-organ chip system. We will utilize these murine and stem cell-based
platforms to study how T21 affects normal functioning and biological responses of the lung airway
epithelium and endothelium. Moreover, we will in real-time analyze inflammation development and
innate immune cells mobilization in response to challenge with inhaled airborne influenza virus
particles. Our central hypothesis is that this dynamic living microsystem can recapitulate innate
immune dysregulation in OS, reveal a pulmonary exaggerated immune response to challenge with
inhaled infective agents, and enable discovery of previously unknown pathologies in airway function
in the context of a multi-organ physiologically linked system.
21 三体 (T21) 是欧文综合征 (OS) 的分子原因,欧文综合征是最常见的染色体疾病
全世界人类的异常。肺部疾病是发病的一个重要原因
OS 患者的死亡率。反复呼吸道感染在这些人群中尤其常见
个人,并且常常危及生命。然而,尽管最近的研究报告免疫
患有 OS 的个体的失调和干扰素过度活跃,我们在
了解 21 号染色体的额外遗传物质如何影响稳态免疫
肺的活动,以及先天免疫激活和髓系白细胞的动员,
是针对呼吸道病原体的急性免疫反应的关键介质。器官芯片是
采用微芯片制造方法创建的仿生、微流体、细胞培养装置
包含连续灌注的中空微通道,其中居住着活组织细胞,排列成
模拟器官水平的生理学。通过概括多细胞结构,组织-组织
界面、化学梯度、机械线索和身体的血管灌注,这些设备
产生传统二维或
三维文化系统。它们还能够实现高分辨率、实时成像和体外
分析功能组织中活细胞的生化、遗传和代谢活动
和器官背景。该项目的总体目标是应用微工程原理
器官芯片技术并开发高度创新和先进的、生理相关的
器官-器官串扰模型,用于描述 OS 对肺稳态生理学的影响
模拟临床观察到的 T21 引起的免疫失调。为此,我们将创建一个
微流体集成的小鼠多器官系统,可复制骨髓(BM)-肺轴,
使用从野生型 (WT) 和 Op(16)1/Yey 小鼠(OS 小鼠模型)分离的原代细胞。在
同时,为了最终将研究结果转化为人类,我们将集中部分努力
产生人肺气道上皮、血管内皮和造血干细胞
诱导健康受试者和 OS 个体的多能干细胞来重建肺和骨髓
集成多器官芯片系统中的组织。我们将利用这些基于小鼠和干细胞的
研究 T21 如何影响肺气道正常功能和生物反应的平台
上皮和内皮。此外,我们将实时分析炎症发展和
先天免疫细胞动员以应对吸入的空气传播流感病毒的挑战
颗粒。我们的中心假设是,这种动态的生命微系统可以重现先天的
OS 中的免疫失调,揭示了肺部对挑战的过度免疫反应
吸入感染剂,并能够发现气道功能中以前未知的病理学
在多器官生理联系系统的背景下。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kambez Hajipouran Benam其他文献
Kambez Hajipouran Benam的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kambez Hajipouran Benam', 18)}}的其他基金
A Microphysiological Mimicry of Human Lung-Bone Marrow Organ-Organ Crosstalk On-a-Chip
芯片上人体肺-骨髓器官-器官串扰的微生理模拟
- 批准号:
10468736 - 财政年份:2021
- 资助金额:
$ 210.19万 - 项目类别:
A Microphysiological Mimicry of Human Lung-Bone Marrow Organ-Organ Crosstalk On-a-Chip
芯片上人体肺-骨髓器官-器官串扰的微生理模拟
- 批准号:
10237309 - 财政年份:2021
- 资助金额:
$ 210.19万 - 项目类别:
A Microphysiological Mimicry of Human Lung-Bone Marrow Organ-Organ Crosstalk On-a-Chip
芯片上人体肺-骨髓器官-器官串扰的微生理模拟
- 批准号:
10378933 - 财政年份:2021
- 资助金额:
$ 210.19万 - 项目类别:
An Advanced Lung Organomimetic to Reproduce Human Airway Pathophysiology
重现人类气道病理生理学的先进肺器官模拟
- 批准号:
9766131 - 财政年份:2019
- 资助金额:
$ 210.19万 - 项目类别:
A Microphysiological Mimicry of Human Lung-Bone Marrow Organ-Organ Crosstalk On-a-Chip
芯片上人体肺-骨髓器官-器官串扰的微生理模拟
- 批准号:
10019354 - 财政年份:2019
- 资助金额:
$ 210.19万 - 项目类别:
相似国自然基金
去泛素化酶USP5调控P53通路在伴E2A-PBX1成人ALL的致病机制研究
- 批准号:81900151
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
核基质结合区蛋白SATB1调控CCR7抑制急性T淋巴细胞白血病中枢浸润的作用与机制
- 批准号:81870113
- 批准年份:2018
- 资助金额:55.0 万元
- 项目类别:面上项目
成人及儿童急性淋巴细胞白血病的基因组转录组生物信息学分析方法建立及数据分析
- 批准号:81570122
- 批准年份:2015
- 资助金额:60.0 万元
- 项目类别:面上项目
NR3C1基因突变在成人急性淋巴细胞白血病耐药与复发中的作用与机制研究
- 批准号:81470309
- 批准年份:2014
- 资助金额:75.0 万元
- 项目类别:面上项目
儿童和成人急性T淋巴细胞白血病中miRNA和转录因子共调控网络的差异性研究
- 批准号:31270885
- 批准年份:2012
- 资助金额:80.0 万元
- 项目类别:面上项目
相似海外基金
Mechanical signaling through the nuclear membrane in lung alveolar health
通过核膜的机械信号传导影响肺泡健康
- 批准号:
10677169 - 财政年份:2023
- 资助金额:
$ 210.19万 - 项目类别:
p16INK4a+ fibroblasts regulate epithelial regeneration after injury in lung alveoli through the SASP
p16INK4a成纤维细胞通过SASP调节肺泡损伤后的上皮再生
- 批准号:
10643269 - 财政年份:2023
- 资助金额:
$ 210.19万 - 项目类别:
Consequences of Perinatal Nicotine Exposure on Functional Brainstem Development
围产期尼古丁暴露对功能性脑干发育的影响
- 批准号:
10752337 - 财政年份:2023
- 资助金额:
$ 210.19万 - 项目类别:
Targeting Menin in Acute Leukemia with Upregulated HOX Genes
通过上调 HOX 基因靶向急性白血病中的 Menin
- 批准号:
10655162 - 财政年份:2023
- 资助金额:
$ 210.19万 - 项目类别: