A Microphysiological Mimicry of Human Lung-Bone Marrow Organ-Organ Crosstalk On-a-Chip
芯片上人体肺-骨髓器官-器官串扰的微生理模拟
基本信息
- 批准号:10468736
- 负责人:
- 金额:$ 38.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AcuteAddressAdultAirAmino Acid SequenceAnimalsArchitectureBenchmarkingBiochemical GeneticsBiomedical ResearchBiomimeticsBirdsBlood VesselsBone MarrowBreathingCD8-Positive T-LymphocytesCaliforniaCell Culture TechniquesCellsCessation of lifeChemicalsClinicClinicalClinical DataCodeCommunicable DiseasesCommunicationComplexDataDevicesDiseaseDisease OutbreaksEngineeringEnsureEpidemicEpidemiologyEpithelial CellsGenerationsGenotypeGoalsHemagglutininHematopoieticHumanImmuneImmunologicsImpairmentIn VitroInfectionInflammationInflammatoryInfluenzaInfluenza A Virus, H1N1 SubtypeInfluenza A Virus, H5N1 SubtypeInfluenza A virusLeadLength of StayLeukocytesLifeLinkLiquid substanceLower Respiratory Tract InfectionLungLung infectionsMediatingMetabolicMethodsMicrofluidicsModelingMolecularMorbidity - disease rateMusNeutrophil InfiltrationOrganOutcomePathogenicityPathologyPatientsPerfusionPeriodicityPhysiologicalPhysiologyPublic HealthReportingResolutionRespiratory SystemRoleSecuritySeveritiesSeverity of illnessShapesSiteSmokingSystemTechnologyTimeTissuesVietnamViralViral HemagglutininsVirulenceVirulence FactorsVirulentVirusVirus Diseasesaerosolizedairway epitheliumbioscaffoldcell typedrug developmentefficacy testingglobal healthhuman subjecthuman tissuein vitro Modelin vivoinfluenza infectioninfluenza virus straininfluenzavirusinnovationlung developmentmechanical signalmicrochipmicrophysiology systemmicrosystemsmimicrymonocytemortalitymouse modelneutrophilnew therapeutic targetnovelorgan on a chippandemic diseasepandemic influenzaparticlepatient populationprecision drugsreal-time imagesrecruitrespiratoryrespiratory virusresponseswine influenzathree dimensional cell culturevirology
项目摘要
PROJECT SUMMARY.
Several new viral respiratory tract infectious diseases with epidemic potential that threaten global health security
have emerged in the past 20 years. Influenza A viruses (IAVs) comprise 50% of the emerging respiratory viruses and can
cause substantial morbidity and mortality. IAVs can infect a diversity of avian and mammalian species, including
humans, and have the remarkable capacity to evolve and adapt to new hosts. Despite the tremendous progress made in
virology and epidemiology, which subtype or strain of IAV will cause the next outbreak remains unpredictable.
Importantly, there is no clinically simulating, pathophysiologically relevant, and readily available in vitro
multi-organ system for predicting the pathogenicity of emerging and re-emerging influenza viruses in humans.
Recent compelling evidence have revealed opposing roles for two major classes of bone marrow (BM)-produced innate
immune cells in shaping the outcome of IAV infection, with neutrophils offering protection and increase in circulating
monocytes being associated with increased pathology. Thus, selective mobilization of either of these two distinct cell
types in response to pulmonary infection with IAV can indirectly reveal potential pathogenicity of a given viral
strain. The overarching goal of this project is to develop a highly innovative, reductionist, yet advanced and complex,
physiologically relevant in vitro model of influenza infection in humans utilizing Organ-on-Chip technology in order to
predict virulence and infectivity of different IAV strains, by reproducing clinically and in vivo-observed immunological
correlates of infection severity. More specifically, we will engineer a first-in-kind fluidically integrated multi-
organ system that recreates BM-lung axis, using primary human-derived cells, for real-time analysis of
inflammation and leukocyte mobilization in response to influenza challenge. Our central hypothesis is that this
dynamic living microsystem can recapitulate differential immune cell mobilization and tissue pathology in
response to high-pathogenicity vs. low-pathogenicity IAV infections in vitro. To address the hypothesis, we
propose the following specific aims: (1) to engineer a living and hematopoietically active human BM-on-a-Chip and
microfluidically link it to a human Lung Small Airway-on-a-Chip that our team has previously developed and
characterize homeostatic physiology and organ-organ crosstalk; and (3) to challenge the BM-Lung microsystem with
airborne IAVs under rhythmic breathing and reproduce differential leukocyte mobilization and tissue damage in
response to distinctly pathogenic viral strains. Such a novel platform holds great potential in emulating and predicting
pathogenicity of IAVs (e.g., during outbreaks, pandemics or when presence of a highly virulent strain is speculated),
utilizing human cells isolated from desired donor/patient populations, and without needing to adapt the virus for host
(as required for some animal studies). In addition, it can considerably accelerate drug development studies by enabling
personalized drug efficacy testing and identification of new therapeutic targets.
项目摘要。
具有威胁全球卫生安全的流行潜力的几种新病毒呼吸道传染病
在过去的20年中出现了。流感病毒(IAVS)占新兴呼吸道病毒的50%,可以
引起大量的发病率和死亡率。 IAV可以感染各种各样的禽和哺乳动物,包括
人类,并具有出色的发展能力,可以发展和适应新宿主。尽管取得了巨大进展
病毒学和流行病学(IAV的亚型或菌株)将导致下一次爆发。
重要的是,没有临床模拟,病理生理学相关,并且在体外随时可用
多器官系统,用于预测人类出现和重新出现流感病毒的致病性。
最近有说服力的证据揭示了两种主要类别的骨髓(BM)生产的先天性的作用
免疫细胞塑造IAV感染的结果,中性粒细胞提供保护和循环增加
单核细胞与病理增加有关。因此,选择性动员这两个不同的细胞中的任何一个
响应IAV肺部感染的类型可以间接揭示给定病毒的潜在致病性
拉紧。该项目的总体目标是开发一个高度创新的,还原的,却是高级和复杂的,
在人类中使用器官芯片技术的人类感染流感感染与生理相关的体外模型
通过临床和体内的免疫学,预测不同IAV菌株的毒力和感染性
感染严重程度的相关性。更具体地说,我们将设计一项最初的流体集成的多元
使用原代人源细胞重新创建BM肺轴的器官系统,以实时分析
炎症和白细胞动员响应流感挑战。我们的中心假设是
动态生活微系统可以概括差异免疫细胞动员和组织病理学
在体外对高致病性与低致病性IAV感染的反应。为了解决该假设,我们
提出以下具体目的:(1)设计生命和造血活跃的人类BM片和
微流体将其链接到我们团队以前开发的人类肺部小气道,并且
表征体内稳态生理和有机器官串扰; (3)用
在节奏呼吸下的空中IAV和繁殖差异白细胞动员和组织损伤
对明显致病的病毒菌株的反应。这样一个新颖的平台在模拟和预测方面具有巨大的潜力
IAV的致病性(例如,在爆发,大流行期或猜测高毒性菌株的存在时),
利用从所需的供体/患者种群中分离出的人类细胞,而无需适应宿主病毒
(根据某些动物研究的要求)。此外,它可以通过启用药物开发研究大大加速
个性化的药物疗效测试和新的治疗靶标的鉴定。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kambez Hajipouran Benam其他文献
Kambez Hajipouran Benam的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kambez Hajipouran Benam', 18)}}的其他基金
Emulating Immune Dysregulation by Trisomy 21 in a Multi-Organ-on-a-Chip System
在多器官芯片系统中模拟 21 三体的免疫失调
- 批准号:
10292703 - 财政年份:2021
- 资助金额:
$ 38.91万 - 项目类别:
A Microphysiological Mimicry of Human Lung-Bone Marrow Organ-Organ Crosstalk On-a-Chip
芯片上人体肺-骨髓器官-器官串扰的微生理模拟
- 批准号:
10237309 - 财政年份:2021
- 资助金额:
$ 38.91万 - 项目类别:
A Microphysiological Mimicry of Human Lung-Bone Marrow Organ-Organ Crosstalk On-a-Chip
芯片上人体肺-骨髓器官-器官串扰的微生理模拟
- 批准号:
10378933 - 财政年份:2021
- 资助金额:
$ 38.91万 - 项目类别:
An Advanced Lung Organomimetic to Reproduce Human Airway Pathophysiology
重现人类气道病理生理学的先进肺器官模拟
- 批准号:
9766131 - 财政年份:2019
- 资助金额:
$ 38.91万 - 项目类别:
A Microphysiological Mimicry of Human Lung-Bone Marrow Organ-Organ Crosstalk On-a-Chip
芯片上人体肺-骨髓器官-器官串扰的微生理模拟
- 批准号:
10019354 - 财政年份:2019
- 资助金额:
$ 38.91万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Climate Change Effects on Pregnancy via a Traditional Food
气候变化通过传统食物对怀孕的影响
- 批准号:
10822202 - 财政年份:2024
- 资助金额:
$ 38.91万 - 项目类别:
Developing Real-world Understanding of Medical Music therapy using the Electronic Health Record (DRUMMER)
使用电子健康记录 (DRUMMER) 培养对医学音乐治疗的真实理解
- 批准号:
10748859 - 财政年份:2024
- 资助金额:
$ 38.91万 - 项目类别:
Targeting Alcohol-Opioid Co-Use Among Young Adults Using a Novel MHealth Intervention
使用新型 MHealth 干预措施针对年轻人中酒精与阿片类药物的同时使用
- 批准号:
10456380 - 财政年份:2023
- 资助金额:
$ 38.91万 - 项目类别:
Immunomodulatory ligand B7-1 targets p75 neurotrophin receptor in neurodegeneration
免疫调节配体 B7-1 在神经变性中靶向 p75 神经营养蛋白受体
- 批准号:
10660332 - 财政年份:2023
- 资助金额:
$ 38.91万 - 项目类别:
Mixed methods examination of warning signs within 24 hours of suicide attempt in hospitalized adults
住院成人自杀未遂 24 小时内警告信号的混合方法检查
- 批准号:
10710712 - 财政年份:2023
- 资助金额:
$ 38.91万 - 项目类别: