Learning Universal Patient Representations with Hierarchical Transformers
使用分层转换器学习通用患者表示
基本信息
- 批准号:10587270
- 负责人:
- 金额:$ 64.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-02-07 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:Accident and Emergency departmentAddressAlgorithmsArchitectureAreaChestClassificationClinicalClinical ResearchCodeCompetenceComplexComputersDataData AggregationData SetDatabasesDecision MakingDevelopmentDiagnosisE-learningElectronic Health RecordExperimental DesignsFundingGoalsHealth StatusImageIndividualInjuryIntensive Care UnitsKnowledgeLearningLengthLinkMachine LearningMapsMedicalMethodsModalityModelingOutputPatient CarePatient EducationPatientsPerformancePhenotypePrivatizationProcessProductivityResearchSeveritiesSourceStructureSupervisionSystemTechniquesTerminologyTextTimeTrainingUnified Medical Language SystemWorkdata fusionexperimental studyfrontierhealth dataimprovedinnovationlanguage traininglight weightmachine learning algorithmmultimodalitymultiple data typesneuralneural modelnovelpatient prognosispoint of carepreventprognosticstructured datausability
项目摘要
Project Summary
Electronic health records contain a wealth of information about patient health status that can be mined for
multiple purposes, including clinical research and improved decision-making at the point of care. This
information can be represented as structured variables, unstructured text, and images, among other data
types. In this work, we develop new models for representing the unstructured text that take advantage of
powerful neural models called pre-trained transformers. We propose to make these models usable for much
longer texts by adding hierarchical layers to operate over summaries of smaller chunks of text, and shrinking
the size of the encoder that operates on smaller chunks. First, we develop a smaller encoder for sentence and
paragraph-sized texts, by using a technique called extreme distillation that trains smaller models from the
output of larger models. We also propose to pre-train hierarchical models for text, by taking advantage of
smaller encoders like that from the first aim. We take advantage of both public and private datasets and
experiment with different pre-training tasks and architectures. Our final aim proposes to combine
representations learned from text with those from the more mature areas of structured data and images. We
design experiments that answer the question of how best to merge these different information sources, and
apply them to important clinical classification use cases that are likely to require multiple information sources
for accurate performance. Specifically, we address the clinical tasks of predicting injury severity in emergency
departments, and predicting diagnosis and prognosis of patients in intensive care units.
项目摘要
电子健康记录包含有关患者健康状况的大量信息
多种目的,包括临床研究和改善护理时的决策。这
信息可以表示为结构化变量,非结构化文本和图像,以及其他数据
类型。在这项工作中,我们开发了代表非结构化文本的新模型
强大的神经模型称为预训练的变压器。我们建议使这些模型可用于很多
较长的文本通过添加层次层来对较小的文本的摘要进行操作,然后收缩
在较小的块上运行的编码器的大小。首先,我们为句子开发了一个较小的编码器,
段落大小的文本,使用一种称为“极端蒸馏”的技术,该技术从训练较小的模型中
较大型号的输出。我们还建议通过利用
较小的编码器从第一个目标出发。我们利用公共和私人数据集以及
尝试不同的训练前任务和体系结构。我们的最终目标提议结合
从文本中汲取的表示,从结构化数据和图像的更成熟领域的文本中学到。我们
设计实验回答了如何最好地合并这些不同信息源的问题
将它们应用于可能需要多个信息源的重要临床分类用例
为了准确的性能。具体而言,我们解决了预测紧急情况伤害严重程度的临床任务
部门,预测重症监护病房中患者的诊断和预后。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Timothy A Miller其他文献
Timothy A Miller的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Timothy A Miller', 18)}}的其他基金
Automated domain adaptation for clinical natural language processing
临床自然语言处理的自动领域适应
- 批准号:
9768545 - 财政年份:2018
- 资助金额:
$ 64.82万 - 项目类别:
Bone Tissue Engineering Using Mineralized Collagen-GAG Scaffolds
使用矿化胶原蛋白-GAG 支架的骨组织工程
- 批准号:
8621974 - 财政年份:2012
- 资助金额:
$ 64.82万 - 项目类别:
Bone Tissue Engineering Using Mineralized Collagen-GAG Scaffolds
使用矿化胶原蛋白-GAG 支架的骨组织工程
- 批准号:
8440695 - 财政年份:2012
- 资助金额:
$ 64.82万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Mixed methods examination of warning signs within 24 hours of suicide attempt in hospitalized adults
住院成人自杀未遂 24 小时内警告信号的混合方法检查
- 批准号:
10710712 - 财政年份:2023
- 资助金额:
$ 64.82万 - 项目类别:
HEAR-HEARTFELT (Identifying the risk of Hospitalizations or Emergency depARtment visits for patients with HEART Failure in managed long-term care through vErbaL communicaTion)
倾听心声(通过口头交流确定长期管理护理中的心力衰竭患者住院或急诊就诊的风险)
- 批准号:
10723292 - 财政年份:2023
- 资助金额:
$ 64.82万 - 项目类别:
Biomarkers for Brain Resetting as an Assistive Tool in the Treatment of Status Epilepticus
大脑重置生物标志物作为治疗癫痫持续状态的辅助工具
- 批准号:
10698969 - 财政年份:2023
- 资助金额:
$ 64.82万 - 项目类别:
Deep Learning Assisted Scoring of Point of Care Lung Ultrasound for Acute Decompensated Heart Failure in the Emergency Department
深度学习辅助急诊室急性失代偿性心力衰竭护理点肺部超声评分
- 批准号:
10741596 - 财政年份:2023
- 资助金额:
$ 64.82万 - 项目类别:
Development of a regional anesthesia guidance system to increase patient access to opioid-sparing analgesia for hip fracture pain
开发区域麻醉引导系统,以增加患者获得髋部骨折疼痛的阿片类药物保留镇痛的机会
- 批准号:
10759550 - 财政年份:2023
- 资助金额:
$ 64.82万 - 项目类别: