Bone Tissue Engineering Using Mineralized Collagen-GAG Scaffolds
使用矿化胶原蛋白-GAG 支架的骨组织工程
基本信息
- 批准号:8440695
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-10-01 至 2015-09-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAdhesionsAffectAfghanistanAgingArchitectureAutologousBackBindingBiocompatibleBiological SciencesBone MarrowBone TissueBone TransplantationCaringCellsCephalicCollagenDefectDevelopmentDiffusionDoseExcisionExhibitsExtracellular MatrixGAG GeneGlycolic-Lactic Acid PolyesterGlycosaminoglycansGoalsHarvestHealedHemostatic AgentsHumanImplantIn VitroInfiltrationInflammationInjuryIntegrinsIraqLaboratoriesLimb structureMalignant NeoplasmsMechanicsMedical centerMesenchymal Stem CellsModelingNutrientOryctolagus cuniculusOsteogenesisOsteomyelitisPainPatientsPopulationPropertyQuality of CareRecombinantsRoleServicesSignal TransductionSignaling MoleculeSiteSolidStromal CellsStructureSystemTechniquesTechnologyTest ResultTestingTissue EngineeringTraumaVascularizationVeteransWound Healingbasebiomaterial developmentbonebone morphogenetic protein 2calcium phosphatecombatcomparative efficacycraniofacialhealingimprovedin vivomineralizationnanoparticulateoperationosteogenicpreventpublic health relevancereconstructionrepairedscaffoldtissue culture
项目摘要
DESCRIPTION (provided by applicant):
Our laboratory has been focused on the development of a synthetic bone graft substitute (BGS) for the past 15 years. Our experimental bone graft substitutes have included PLGA- (Poly-lactide-co-glycolide) and collagen-based scaffolds seeded with autologous bone marrow stromal cells (BMSC), and stimulated by osteoinductive agents including BMP-2. With these BGS models, we have generated new bone both in vitro, using a 3-dimensional tissue culture system, and in vivo, resulting in the healing of critical-sized cranial defects in the rabbit. While our studies have been promising, a clinically useful BGS remains elusive. The carrier is of critical importance in the development of a BGS. PLGA has shown much promise, being both biocompatible and biodegradable. However, there are limitations to the use of PLGA in tissue engineering. PLGA induces the formation of acidic degradation products that can affect local PH, possibly inducing inflammation. Collagen based scaffolds, including collagen-GAG, have been widely used in bone tissue engineering because collagen is a naturally existing component of extracellular matrix that promotes cell binding, exhibits low antigenicity and has excellent haemostatic property. We demonstrated that human mesenchymal stem cells (MSC) seeded in collagen scaffolds exhibit accelerated and robust mineralization and bone formation in comparison to their counterparts seeded in PLGA scaffolds. However, we also discovered in our in vitro studies that cell-seeded collagen scaffolds undergo significant contraction compared to PLGA scaffolds. The contraction can greatly hamper application of collagen implants in repairing bony defects. In order to limit volume loss and destruction of collagen implants, we propose to stabilize the structure of collagen scaffolds by incorporating nanoparticulate calcium phosphate (CaP) on the collagen-GAG fibrils. Our initial test results indicate using MC-GAG scaffolds can greatly prevent contraction caused by adhesion and differentiation of hMSCs. It is also superior to collagen-GAG in supporting new bone formation. Our current proposal intends to further investigate the feasibility of MC-GAG scaffolds in bone tissue engineering. In this proposal, we will compare collagen-GAG and MC-GAG scaffolds for their ability to support osteogenic differentiation in rabbit BMSCs cultured in vitro. We will also compare the efficacy of cellular scaffolds made of collagen-GAG and MC-GAG in healing a critical-sized rabbit cranial defect by performing histological and mechanical analysis of newly formed bone. Finally, we will study integrins and their downstream signaling molecules responsible for the differences between collagen-GAG and MC-GAG in their ability to control contraction and support osteogenic differentiation in rBMSCs. We expect that MC-GAG scaffolds will (1) enhance osteogenic differentiation and reduce contraction in rabbit BMSCs compared to collagen alone, and (2) accelerate new bone formation in a rabbit cranial defect model compared to collagen alone. We anticipate that changes in integrin signaling are responsible for enhanced differentiation and reduced contraction of rBMSCs in MC-GAG scaffolds.
描述(由申请人提供):
在过去的15年中,我们的实验室一直关注合成骨移植替代品(BGS)的发展。我们的实验性骨移植替代物包括Plga-(聚乳酸 - 糖糖苷)和基于胶原蛋白的支架,这些支架与自体骨髓基质细胞(BMSC)种子,并由包括BMP-2在内的骨诱导剂刺激。使用这些BGS模型,我们使用3维组织培养系统和体内产生了新的骨骼,从而导致兔子中关键尺寸的颅骨缺陷的愈合。尽管我们的研究很有希望,但临床上有用的BG仍然难以捉摸。载体在BGS的发展中至关重要。 PLGA表现出了很多希望,既具有生物相容性又可生物降解。但是,在组织工程中使用PLGA存在局限性。 PLGA诱导可能影响局部pH的酸性降解产物的形成,可能引起炎症。基于胶原蛋白的支架,包括胶原蛋白 - GAG,已广泛用于骨组织工程中,因为胶原蛋白是促进细胞结合的细胞外基质的自然存在的成分,它表现出低抗原性,并且具有极好的止血特性。我们证明,与在PLGA支架中播种的对应物相比,在胶原支架中播种的人间充质干细胞(MSC)表现出加速而强大的矿化和骨形成。但是,我们在体外研究中还发现,与PLGA支架相比,细胞种子的胶原蛋白支架经历了明显的收缩。收缩可能会大大阻碍胶原蛋白植入物在修复骨缺陷中的应用。为了限制胶原蛋白植入物的体积损失和破坏,我们建议通过在胶原-GAG原纤维上掺入纳米磷酸钙(CAP)来稳定胶原蛋白支架的结构。我们的初始测试结果表明,使用MC-GAG支架可以极大地阻止HMSC的粘附和分化引起的收缩。它在支撑新的骨形成方面也优于胶原蛋白-GAG。我们目前的建议旨在进一步研究MC-GAG支架在骨组织工程中的可行性。在此提案中,我们将比较胶原蛋白-GAG和MC-GAG支架的能力,以支持在体外培养的兔BMSC中的成骨分化的能力。我们还将通过对新形成的骨骼进行组织学和机械分析来比较胶原蛋白-GAG和MC-GAG制成的细胞支架在愈合临界大小的兔颅缺损方面的功效。最后,我们将研究整联蛋白及其下游信号传导分子,以控制胶原蛋白-GAG和MC-GAG之间在控制收缩和支持RBMSC中成骨分化的能力方面的差异。我们预计,与单独的胶原蛋白相比,MC-GAG支架将(1)增强成骨分化并减少兔BMSC的收缩,并且(2)与单独的胶原蛋白相比,在兔颅缺陷模型中加速了新的骨形成。我们预计整联蛋白信号传导的变化将导致MC-GAG支架中RBMSC的分化增强和减少收缩。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Timothy A Miller其他文献
Timothy A Miller的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Timothy A Miller', 18)}}的其他基金
Learning Universal Patient Representations with Hierarchical Transformers
使用分层转换器学习通用患者表示
- 批准号:
10587270 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Automated domain adaptation for clinical natural language processing
临床自然语言处理的自动领域适应
- 批准号:
9768545 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Bone Tissue Engineering Using Mineralized Collagen-GAG Scaffolds
使用矿化胶原蛋白-GAG 支架的骨组织工程
- 批准号:
8621974 - 财政年份:2012
- 资助金额:
-- - 项目类别:
相似国自然基金
动脉粥样硬化发生中CAPN2影响内皮粘连的机制研究
- 批准号:82000254
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
层粘连蛋白调控巨噬细胞和脂肪基质细胞影响肥胖脂肪组织重塑的机制
- 批准号:
- 批准年份:2019
- 资助金额:300 万元
- 项目类别:
层粘连蛋白受体第272位苏氨酸影响猪瘟病毒感染的分子机制
- 批准号:31902264
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
大黄-桃仁介导AhR通路影响Th17/Treg和肠道菌群平衡改善肠粘膜屏障功能防治粘连性肠梗阻的机制研究
- 批准号:81804098
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
保留双层肌膜的功能性肌肉移植中S1P/S1PR1轴调节巨噬细胞迁移及分化对移植肌肉粘连与功能的影响
- 批准号:81871787
- 批准年份:2018
- 资助金额:55.0 万元
- 项目类别:面上项目
相似海外基金
Dentin Biomodification for Optimization of Bioadhesive Dental Restorations
牙本质生物改性优化生物粘附性牙齿修复体
- 批准号:
10874883 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Full Project 1: Defining Mechanisms of MICAL-dependent Pancreatic Cancer Cell Migration
完整项目 1:MICAL 依赖性胰腺癌细胞迁移的定义机制
- 批准号:
10762273 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Translational Multimodal Strategy for Peri-Implant Disease Prevention
种植体周围疾病预防的转化多模式策略
- 批准号:
10736860 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Injury of blood brain and alveolar-endothelial barriers caused by alcohol and electronic cigarettes via purinergic receptor signaling
酒精和电子烟通过嘌呤受体信号传导引起血脑和肺泡内皮屏障损伤
- 批准号:
10638221 - 财政年份:2023
- 资助金额:
-- - 项目类别: