Deep Learning Assisted Scoring of Point of Care Lung Ultrasound for Acute Decompensated Heart Failure in the Emergency Department
深度学习辅助急诊室急性失代偿性心力衰竭护理点肺部超声评分
基本信息
- 批准号:10741596
- 负责人:
- 金额:$ 35.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-15 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:Accident and Emergency departmentAcuteAddressAdmission activityAlgorithmsAttentionAutomationBedsBiological MarkersBlood TestsCOVID-19COVID-19 pandemicCaringClinicalClinical MarkersClinical ResearchClinical assessmentsClipComputing MethodologiesCongestive Heart FailureCorrelation StudiesCritical IllnessDataDecision MakingDependenceDetectionDevicesDiagnosisEmergency CareEmergency Department PhysicianEtiologyEvaluationFunctional disorderFundingGoalsGrantHeart failureHospitalizationHospitalsHourHumanImageInpatientsLaboratoriesLengthLength of StayLungManualsMeasuresMethodsModelingMulti-Institutional Clinical TrialNursing StaffObservational StudyOutcomePatient AdmissionPatient CarePatient-Focused OutcomesPatientsPerformancePhysical ExaminationPhysiciansProviderPublic HealthRecording of previous eventsRoleSensitivity and SpecificitySeveritiesSeverity of illnessSpecialistStandardizationTherapeutic InterventionThoracic RadiographyTimeTrainingUltrasonographyUnited States National Institutes of HealthVariantcare outcomesclinical careclinical examinationcognitive loadcohortcomputerized toolsdeep learningexperienceimprovedinpatient servicemortalitynew technologynovelnovel therapeuticspandemic diseaseparticipant enrollmentpoint of carepreventprognostic valueprospectiveresearch studyskillstoolultrasoundward
项目摘要
Since the onset of the COVID-19 pandemic, the practice of “boarding” patients admitted to the hospital in the
Emergency Department (ED) has reached unprecedented levels. For critically ill patients including those with
acute decompensated heart failure (ADHF), ED boarding worsens outcomes as patients spend hours in the ED
waiting to be transferred to the appropriate inpatient ward for specialized care. Given the unabated increase in
ED boarding, length of ED stay, and subsequent time to specialist evaluation and management, developing new
technologies to enable rapid reassessment of ADHF patients during these protracted ED stays is critical for
improved care and patient outcomes. In a typical workflow in the Emergency Department, physicians perform
bedside lung ultrasound once, at time of initial patient presentation, and use the presence or absence of ‘B-
Lines’ in the images as a biomarker for pulmonary congestion. Often assessed by ED physicians in a binary
manner, the presence of B-lines is used in conjunction with a clinical exam and blood tests to rule in acute ADHF.
While detecting B-lines can be as easy as looking at two lung zones to make a clinical decision of ADHF, counting
B-lines requires both skill and training in B-line identification, and in aggregating B-line counts over 8+ lung
zones for accuracy. For a busy ED physician this is prohibitive given constraints on time, training, and cognitive
load. To ease this problem, ED physicians need tools that can automatically count and aggregate the B-lines to
quantify the severity of the congestion. Without this automation, it is entirely possible that either suboptimal or
even no treatment will be initiated for ADHF patients in the ED leading to increased hospital length of stay, further
perpetuating the ED boarding. The creation of tools for automatic quantification has the potential to enable
workflows with reassessment to meet the changing patient care needs. Our long-term goals are to develop
computational tools that mitigate the operator-dependence endemic to ultrasound image acquisition and
interpretation. The objective of this Trailblazer R21 application is to develop and validate computational methods
for quantifying pulmonary congestion from bedside lung ultrasound in the ED, which will be achieved by (1)
developing and evaluating explainable tools for automated quantification of pulmonary congestion using
retrospective lung ultrasound data and (2) validating the performance of the trained models in a workflow
demonstrated by a prospective observational study in which patients presenting to the ED with ADHF will be
assessed with lung ultrasound both pre-and post-therapeutic intervention, and findings typically used to measure
pulmonary congestion on inpatient services will be recorded for both time points.
自从Covid-19-19大流行病开始以来,“登机”患者的做法被送往医院
急诊科(ED)达到了前所未有的水平。对于重症患者,包括患者
随着患者在急诊室花费数小时,急性心力衰竭(ADHF),ED登机的结果恶化
等待转移到适当的住院病房进行专业护理。鉴于未升高
ED登机,ED停留时间以及随后的专业评估和管理时间,开发了新的
在这些持久的ED停留期间,可以快速重新评估ADHF患者的技术至关重要
改善护理和患者的结果。在急诊科的典型工作流程中,医生表演
床边肺超声检查一次,在初始患者出现时,并使用'b-的存在或不存在
图像中的线条是肺部充血的生物标志物。经常在二进制中由ED医生评估
方式,B线的存在与临床检查和血液检查一起用于急性ADHF。
虽然检测B线可能就像看两个肺部区域以做出ADHF的临床决定一样容易
B线需要在B线识别方面的技能和培训,并且在8个以上的B线计数中需要
区域的准确性。对于忙碌的ED物理学,这是禁止的时间,培训和认知的限制
加载。为了缓解这个问题,ED医生需要可以自动计算和汇总B线的工具
量化拥塞的严重性。没有这种自动化,次优或
即使没有为ED中的ADHF患者开始治疗,导致住院时间增加,进一步
永久登机。创建自动量化工具有可能启用
重新评估工作流程以满足不断变化的患者护理需求。我们的长期目标是发展
减轻操作员依赖性内在对超声图像采集的计算工具和
解释。此开拓者R21应用程序的目的是开发和验证计算方法
用于量化ED中床边肺超声的肺部充血,这将通过(1)实现
开发和评估可解释的工具,用于使用肺部充血的自动数量
回顾性肺超声数据和(2)在工作流程中验证训练有素的模型的性能
通过一项前瞻性观察性研究证明,在该研究中,向ADHF介绍ED的患者将是
用肺部超声检查术前后干预措施,以及通常用于测量的发现
两个时间点都将记录住院服务的肺部充血。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Goldsmith其他文献
Andrew Goldsmith的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
阿魏酸基天然抗氧化抗炎纳米药物用于急性肾损伤诊疗一体化研究
- 批准号:82302281
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于hemin-MOFs的急性心肌梗塞标志物负背景光电化学-比色双模分析
- 批准号:22304039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
RNA甲基转移酶NSUN2介导SCD1 mRNA m5C修饰调控急性髓系白血病细胞铁死亡的机制研究
- 批准号:82300173
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于IRF5/MYD88信号通路调控巨噬细胞M1极化探讨针刀刺营治疗急性扁桃体炎的机制研究
- 批准号:82360957
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:地区科学基金项目
相似海外基金
Mixed methods examination of warning signs within 24 hours of suicide attempt in hospitalized adults
住院成人自杀未遂 24 小时内警告信号的混合方法检查
- 批准号:
10710712 - 财政年份:2023
- 资助金额:
$ 35.8万 - 项目类别:
The Social-Medical Network: Using a Network Approach to Explore the Integration of Informal and Formal Care Networks of Older Adults
社会医疗网络:利用网络方法探索老年人非正式和正式护理网络的整合
- 批准号:
10724756 - 财政年份:2023
- 资助金额:
$ 35.8万 - 项目类别:
Feasibility of a care team-focused action plan to improve quality of care for children and adolescents with inflammatory bowel disease
以护理团队为重点的行动计划的可行性,以提高炎症性肠病儿童和青少年的护理质量
- 批准号:
10724900 - 财政年份:2023
- 资助金额:
$ 35.8万 - 项目类别:
Michigan Emergency Department Improvement Collaborative AltERnaTives to admission for Pulmonary Embolism (MEDIC ALERT PE) Study
密歇根急诊科改进合作入院肺栓塞 (MEDIC ALERT PE) 研究
- 批准号:
10584217 - 财政年份:2023
- 资助金额:
$ 35.8万 - 项目类别: