Computational and Systems Biology Core
计算和系统生物学核心
基本信息
- 批准号:10251261
- 负责人:
- 金额:$ 40.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-15 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmic AnalysisAlgorithmsAlzheimer&aposs DiseaseAlzheimer&aposs disease pathologyAnimal ModelAnimalsAtlasesBiochemical PathwayBioinformaticsBiologicalBiological MarkersBloodBrainComplexComputational BiologyComputer ModelsComputing MethodologiesDataData AnalysesData SetDatabasesDetectionDevelopmentDiabetes MellitusDietDietary InterventionDiseaseDisseminated Malignant NeoplasmElementsEnvironmentEthnic OriginGenderGeneral PopulationGenesGeneticGenotypeGermanyHumanHuman GenomeImageInternationalKnowledgeLifeLinkLuxembourgMalignant NeoplasmsMedicineMetabolicMetabolic PathwayMetabolismMetabolite InteractionMethodsMicrobeModelingMolecularMultiomic DataNetwork-basedNew YorkNutritionalOrganOutcomePathway AnalysisPathway interactionsPatientsPhenotypePhysiologicalPlantsPlayProcessProteomicsPublicationsPublishingQatarReactionResearchResearch PersonnelResourcesRisk FactorsRoleSourceStandardizationStatistical Data InterpretationStatistical MethodsSubgroupSystemSystems BiologyTechniquesTechnologyTranscriptUniversitiesWorkanalysis pipelinebasebiological systemscohortdata analysis pipelinedata integrationdata miningdietaryendophenotypeexperienceexperimental studyfecal metabolomegenome wide association studygenomic datagut microbiomegut-brain axisheterogenous datahost microbiomehuman modelin silicoinnovationknowledge basemetabolic phenotypemetabolomemetabolomicsmicrobialmicrobiomemicrobiome analysismicrobiome researchmicrobiotamolecular phenotypemouse modelmultidimensional datamultiple omicsnovelnovel therapeuticsphenotypic dataprecision medicineprotein metabolitereconstructionsimulationtranscriptomicsvirtual
项目摘要
ABSTRACT – Computational and Systems Biology Core
The Computational and Systems Biology Core will provide access to advanced data analysis algorithms and
pipelines for the entire project. High-quality preprocessed data will be seamlessly integrated from the Omics
and Technology Core. Our analysis pipelines will perform all major steps of data analysis, including outlier
detection, differential analysis, pathway analysis, and advanced network methods. We will develop methods
specifically tailored for multi-compartment omics data in this project, e.g. from blood, gut, and brain. Such novel
methods for integrated multi-omics, multi-compartment data will provide a unique readout of AD pathology and
allow us to unlock the full potential behind these heterogeneous datasets. Moreover, we will work on
computational models for human-microbe co-metabolism, which will allow in silico simulations of external
influences, such as diet, at physiological scale. The research questions addressed by the core will mainly be
driven by the three projects. To this end, we will focus on the blood-gut-brain axis in human omics datasets
(project 1), in animal model datasets (project 3), and the effects of environment and diet on molecular
phenotypes (project 2). A second, major focus of the core will be on the development and application of a
microbiome-centric bioinformatic knowledge base (an “atlas”). To this end, will construct a Neoj4-based
network database integrating various heterogenous information, including results from metabolomics GWAS,
eQTL studies, Alzheimer-phenotype related association studies (e.g. metabolomics biomarkers of AD
endophenotypes), microbiome-metabolome associations etc. The atlas will allow us to answer complex
research questions, such as finding the connections between a given set of metabolites, genes, metabolic
pathways, GWAS hits, and AD endophenotypes in one single query. In the final part of this project, we will
develop advanced network data mining algorithms on the atlas, to extract novel information beyond that of
simple associations. This will lead to integrated molecular modules associated with AD, providing a multi-omics
view on AD pathobiology. The core will be led by an experienced, international group of PIs with over a decade
of experience in the field. The team has a track record in major fields of metabolic research, including diabetes,
cancer, Alzheimer’s disease, microbiome analysis, and metabolic GWAS. In summary, the Computational and
Systems Biology Core will be central element for computational approaches within the consortium, providing
both data analysis and advanced data integration and data mining techniques.
摘要 - 计算和系统生物学核心
计算和系统生物学核心将提供对高级数据分析算法和
整个项目的管道。高质量的预处理数据将与OMIC无缝集成
和技术核心。我们的分析管道将执行数据分析的所有主要步骤,包括离群值
检测,差分分析,途径分析和高级网络方法。我们将开发方法
专门针对该项目中的多室多轨迹数据量身定制的,例如来自血液,肠道和大脑。这样的小说
综合多媒体的方法,多校区数据将为广告病理学和
允许我们解锁这些异质数据集背后的全部潜力。而且,我们将继续
人类微叶合作代谢的计算模型,这将允许在外部模拟中
影响饮食等影响力。核心解决的研究问题将主要是
由三个项目驱动。为此,我们将重点放在人类幻象数据集中的血统脑轴上
(项目1),在动物模型数据集中(项目3)以及环境和饮食对分子的影响
表型(项目2)。核心的第二个主要重点将放在一个开发和应用上
以微生物组为中心的生物信息学知识库(“地图集”)。为此,将构建一个基于NEOJ4的
网络数据库集成了各种异质信息,包括代谢组学GWAS的结果,
EQTL研究,阿尔茨海默氏症 - 表型相关关联研究(例如,AD代谢组生物标志物
内型型),微生物组 - 甲状谢物关联等。地图集将使我们能够回答复杂
研究问题,例如找到一组代谢物,基因,代谢之间的联系
一个查询中的途径,GWAS命中和广告内型。在该项目的最后部分,我们将
在地图集上开发高级网络数据挖掘算法,以提取以外的新信息
简单的关联。这将导致与AD相关的集成分子模块
查看AD病理生物学。核心将由经验丰富的国际PI团体领导,十多年
领域的经验。该团队在包括糖尿病在内的代谢研究的主要领域有往绩
癌症,阿尔茨海默氏病,微生物组分析和代谢GWA。总之,计算和
系统生物学核心将是财团内计算方法的核心要素,提供
数据分析和高级数据集成和数据挖掘技术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rima F Kaddurah-Daouk其他文献
Rima F Kaddurah-Daouk的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rima F Kaddurah-Daouk', 18)}}的其他基金
Metabolomic Signatures for Disease Sub-classification and Target Prioritization in AMP-AD
AMP-AD 中疾病亚分类和目标优先级的代谢组学特征
- 批准号:
10084547 - 财政年份:2020
- 资助金额:
$ 40.95万 - 项目类别:
Project 3 - Mechanistic studies on role of gut microbiome in models for Alzheimer's disease
项目 3 - 肠道微生物组在阿尔茨海默病模型中作用的机制研究
- 批准号:
9795005 - 财政年份:2019
- 资助金额:
$ 40.95万 - 项目类别:
Project 3 - Mechanistic studies on role of gut microbiome in models for Alzheimer's disease
项目 3 - 肠道微生物组在阿尔茨海默病模型中作用的机制研究
- 批准号:
10017880 - 财政年份:2019
- 资助金额:
$ 40.95万 - 项目类别:
Project 2 - Influence of controlled diets on gut microbiome, metabolome and cognitive function
项目 2 - 控制饮食对肠道微生物组、代谢组和认知功能的影响
- 批准号:
9795004 - 财政年份:2019
- 资助金额:
$ 40.95万 - 项目类别:
Project 2 - Influence of controlled diets on gut microbiome, metabolome and cognitive function
项目 2 - 控制饮食对肠道微生物组、代谢组和认知功能的影响
- 批准号:
10017878 - 财政年份:2019
- 资助金额:
$ 40.95万 - 项目类别:
Project 1 - Changes in Gut Microbiome and related Metabolome Across Trajectory of Alzheimer's Disease
项目 1 - 阿尔茨海默氏病轨迹中肠道微生物组和相关代谢组的变化
- 批准号:
10017875 - 财政年份:2019
- 资助金额:
$ 40.95万 - 项目类别:
相似国自然基金
非光滑Dirac方程的高效数值算法和分析
- 批准号:12371395
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于深度学习模型的等位特异DNA甲基化识别算法开发及分析研究
- 批准号:62301194
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相场模型时空高精度算法的构造与分析
- 批准号:12371396
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
- 批准号:52378011
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
概率约束条件下非线性系统混合最优控制的数值算法设计、分析与应用
- 批准号:62363005
- 批准年份:2023
- 资助金额:32.00 万元
- 项目类别:地区科学基金项目
相似海外基金
Investigating the Protective Efficacy of SIV/HIV T and B cell Immunity Induced by RNA Replicons
研究 RNA 复制子诱导的 SIV/HIV T 和 B 细胞免疫的保护功效
- 批准号:
10673223 - 财政年份:2023
- 资助金额:
$ 40.95万 - 项目类别:
Brain Digital Slide Archive: An Open Source Platform for data sharing and analysis of digital neuropathology
Brain Digital Slide Archive:数字神经病理学数据共享和分析的开源平台
- 批准号:
10735564 - 财政年份:2023
- 资助金额:
$ 40.95万 - 项目类别:
Diagnostic aptamer reagents to develop multi-analyte blood test for pre-clinical, mild and moderate Alzheimer's disease
诊断适体试剂用于开发针对临床前、轻度和中度阿尔茨海默病的多分析物血液检测
- 批准号:
10597840 - 财政年份:2023
- 资助金额:
$ 40.95万 - 项目类别:
An acquisition and analysis pipeline for integrating MRI and neuropathology in TBI-related dementia and VCID
用于将 MRI 和神经病理学整合到 TBI 相关痴呆和 VCID 中的采集和分析流程
- 批准号:
10810913 - 财政年份:2023
- 资助金额:
$ 40.95万 - 项目类别:
Leveraging artificial intelligence/machine learning-based technology to overcome specialized training and technology barriers for the diagnosis and prognostication of colorectal cancer in Africa
利用基于人工智能/机器学习的技术克服非洲结直肠癌诊断和预测的专业培训和技术障碍
- 批准号:
10712793 - 财政年份:2023
- 资助金额:
$ 40.95万 - 项目类别: