Sensory mechanisms of manual dexterity and their application to neuroprosthetics
手灵巧度的感觉机制及其在神经修复学中的应用
基本信息
- 批准号:10240106
- 负责人:
- 金额:$ 109.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2029-04-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAlgorithmsAmputeesAnimalsBehaviorBiomimeticsBionicsBrainCodeComputer Vision SystemsDeafferentation procedureDevelopmentE-learningElectric StimulationEngineeringEvaluationEventHandIntuitionLearningLimb structureLocationManualsMeasuresMolecular ConformationMonkeysMotorMovementNeuraxisNeuronsOutputPatternPeripheral Nerve StimulationPeripheral NervesPostureProcessProprioceptionQuadriplegiaSensoryShapesSignal TransductionSkinSomatosensory CortexStereognosisStimulusSurfaceTactileTimeTouch sensationWorkdeep learningdexteritygraspneuroprosthesisneurotransmissionnovelobject shaperelating to nervous systemresponsesensorsensory feedbacksensory mechanismsomatosensory
项目摘要
PROJECT SUMMARY
Manual behavior requires sensory signals from the hand, both tactile and proprioceptive, as evidenced by the
severe deficits that result from somatosensory deafferentation. Three aspects of the sensory component of hand
sensory function are poorly understood. First, the neural basis of touch has been studied almost exclusively with
stimuli delivered passively to the skin, precluding any understanding of how tactile signals are modulated by and
interact with motor commands. Second, proprioceptive signals carry information not only about the time-varying
conformation of the hand, but also about manually applied forces, but proprioceptive representations of force
are poorly understood. Third, stereognosis – the sense of the three-dimensional shape of objects acquired from
sensory signals arising from the hand – implies the integration of tactile and proprioceptive signals, a process
about which little is known. The study of active touch, hand proprioception, and stereognosis has been hindered
by technical obstacles. Indeed, characterizing self-generated contact with objects has been difficult or
impossible, as has tracking hand movements with sufficient precision. To overcome these obstacles, my team
has developed an apparatus that allows us to measure contact events – with a sensor sheet covering the object’s
surface – and track time-varying hand postures – using deep learning-based computer vision – with
unprecedented precision as animals interact with objects. We then characterize the responses at every stage
along the somatosensory neuraxis, from peripheral nerve through cortex. This novel experimental set up will
allow us to study the neural basis of somatosensation – particularly as it relates to manual dexterity – under
ecologically valid conditions.
In a related line of inquiry, we leverage what we learn about sensory processing to restore the sense of touch to
bionic hands. In brief, we develop algorithms to convert the output of sensors on the bionic hand into patterns of
electrical stimulation of the peripheral nerve (for amputees) or of somatosensory cortex (for people with
tetraplegia) to evoke meaningful tactile percepts. I am one of the principal architects of the biomimetic approach
to artificial touch, which posits that encoding algorithms that mimic natural neural signals will give rise to more
intuitive tactile percepts, thereby endowing bionic hands with greater dexterity. Our work on artificial touch
comprises three components: evaluation of the perceptual correlates of electrical stimulation, development of
sensory encoding algorithms, and assessment of the benefits of artificial touch to manual behavior. The interplay
of the basic scientific results and neural engineering efforts will result in more naturalistic artificial touch for brain-
controlled bionic hands.
项目摘要
手动行为需要手动信号,无论是触觉还是本体感受,
严重定义了体感应死亡的导致。手的感觉成分的三个方面
感官功能知之甚少。首先,触摸的神经元基础几乎完全研究了
刺激被动地传递到皮肤上,排除了对触觉信号如何调节和
与电动机命令互动。其次,本体感受信号不仅包含有关随时间变化的信息
手的构象,但也涉及手动施加力,但武力的本体感受表示
知之甚少。第三,立体认知 - 从中获得的三维形状的感觉
手动引起的感官信号 - 意味着触觉和本体感受信号的整合,一个过程
关于哪个鲜为人知。主动触摸,手部本体感受和立体认知的研究已受到阻碍
由于技术障碍。确实,表征与物体的自我生成的接触非常困难或
不可能,就像足够精确的跟踪手动运动一样。为了克服这些障碍,我的团队
已经开发了一种设备,使我们能够测量接触事件 - 传感器表覆盖了对象的
表面 - 并跟踪随时间变化的手姿势 - 使用基于深度学习的计算机视觉 - 与
当动物与物体相互作用时,空前的精度。然后,我们在每个阶段都表征回答
沿着体感神经毒素,从外周神经到皮质。这个新颖的实验设置将
允许我们研究体质的神经基础,尤其是与手动敏捷有关的神经基础 -
生态有效的条件。
在相关的询问方面,我们利用我们对感官处理学到的知识来恢复触摸感
仿生手。简而言之,我们开发了算法,以将仿生手的传感器输出转换为模式
对周围神经(适用于截肢)或体感皮质的电刺激(适用于患有
四方)唤起有意义的触觉感知。我是仿生方法的主要建筑师之一
对于人工触摸,它认为模仿天然神经信号的编码算法会产生更多
直观的触觉感知,从而使仿生手具有更大的灵巧性。我们在人造触摸方面的工作
包括三个组成部分:评估电刺激的感知相关性,发展
感官编码算法,并评估人工触摸对手动行为的好处。
在基本的科学结果和神经工程工作中,将导致更自然的人工触摸脑 -
受控的仿生手。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SLIMAN BENSMAIA其他文献
SLIMAN BENSMAIA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SLIMAN BENSMAIA', 18)}}的其他基金
The interplay between kinematic and force representations in motor and somatosensory cortices during reaching, grasping, and object transport
伸手、抓握和物体运输过程中运动和体感皮层运动学和力表征之间的相互作用
- 批准号:
10357463 - 财政年份:2022
- 资助金额:
$ 109.46万 - 项目类别:
Sensory mechanisms of manual dexterity and their application to neuroprosthetics
手灵巧度的感觉机制及其在神经修复学中的应用
- 批准号:
10397682 - 财政年份:2021
- 资助金额:
$ 109.46万 - 项目类别:
Biomimetic Somatosensory Feedback through Intracorticalmicrostimulation
通过皮质内微刺激的仿生体感反馈
- 批准号:
9277595 - 财政年份:2016
- 资助金额:
$ 109.46万 - 项目类别:
Hand proprioception and sensorimotor interplay
手本体感觉和感觉运动相互作用
- 批准号:
8619673 - 财政年份:2013
- 资助金额:
$ 109.46万 - 项目类别:
Hand proprioception and sensorimotor interplay
手本体感觉和感觉运动相互作用
- 批准号:
8483746 - 财政年份:2013
- 资助金额:
$ 109.46万 - 项目类别:
Hand proprioception and sensorimotor interplay
手本体感觉和感觉运动相互作用
- 批准号:
8811486 - 财政年份:2013
- 资助金额:
$ 109.46万 - 项目类别:
Hand proprioception and sensorimotor interplay
手本体感觉和感觉运动相互作用
- 批准号:
9035440 - 财政年份:2013
- 资助金额:
$ 109.46万 - 项目类别:
Cortical Processing of Tactual Spacial Information
触觉空间信息的皮层处理
- 批准号:
8043538 - 财政年份:1983
- 资助金额:
$ 109.46万 - 项目类别:
Cortical Processing of Tactual Spacial Information
触觉空间信息的皮层处理
- 批准号:
7559654 - 财政年份:1983
- 资助金额:
$ 109.46万 - 项目类别:
Cortical Processing of Tactual Spacial Information
触觉空间信息的皮层处理
- 批准号:
7454067 - 财政年份:1983
- 资助金额:
$ 109.46万 - 项目类别:
相似国自然基金
分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
- 批准号:12371308
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
资源受限下集成学习算法设计与硬件实现研究
- 批准号:62372198
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于物理信息神经网络的电磁场快速算法研究
- 批准号:52377005
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
考虑桩-土-水耦合效应的饱和砂土变形与流动问题的SPH模型与高效算法研究
- 批准号:12302257
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向高维不平衡数据的分类集成算法研究
- 批准号:62306119
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Sensory mechanisms of manual dexterity and their application to neuroprosthetics
手灵巧度的感觉机制及其在神经修复学中的应用
- 批准号:
10397682 - 财政年份:2021
- 资助金额:
$ 109.46万 - 项目类别:
Sensory mechanisms of manual dexterity and their application to neuroprosthetics
手灵巧度的感觉机制及其在神经修复学中的应用
- 批准号:
10642915 - 财政年份:2021
- 资助金额:
$ 109.46万 - 项目类别:
Computational Design, Fabrication, and Evaluation of Optimized Patient-Specific Transtibial Prosthetic Sockets
优化的患者专用跨胫假肢接受腔的计算设计、制造和评估
- 批准号:
9753235 - 财政年份:2017
- 资助金额:
$ 109.46万 - 项目类别:
Effect of Prosthetic Socket Design on Residual Limb Motion using Biplane X-Ray Video
使用双平面 X 射线视频研究假肢接受腔设计对残肢运动的影响
- 批准号:
9920006 - 财政年份:2016
- 资助金额:
$ 109.46万 - 项目类别:
Understanding Real-Life Falls in Amputees using Mobile Phone Technology
使用移动电话技术了解截肢者现实生活中的跌倒情况
- 批准号:
8738041 - 财政年份:2014
- 资助金额:
$ 109.46万 - 项目类别: