Sensory mechanisms of manual dexterity and their application to neuroprosthetics
手灵巧度的感觉机制及其在神经修复学中的应用
基本信息
- 批准号:10240106
- 负责人:
- 金额:$ 109.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2029-04-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAlgorithmsAmputeesAnimalsBehaviorBiomimeticsBionicsBrainCodeComputer Vision SystemsDeafferentation procedureDevelopmentE-learningElectric StimulationEngineeringEvaluationEventHandIntuitionLearningLimb structureLocationManualsMeasuresMolecular ConformationMonkeysMotorMovementNeuraxisNeuronsOutputPatternPeripheral Nerve StimulationPeripheral NervesPostureProcessProprioceptionQuadriplegiaSensoryShapesSignal TransductionSkinSomatosensory CortexStereognosisStimulusSurfaceTactileTimeTouch sensationWorkdeep learningdexteritygraspneuroprosthesisneurotransmissionnovelobject shaperelating to nervous systemresponsesensorsensory feedbacksensory mechanismsomatosensory
项目摘要
PROJECT SUMMARY
Manual behavior requires sensory signals from the hand, both tactile and proprioceptive, as evidenced by the
severe deficits that result from somatosensory deafferentation. Three aspects of the sensory component of hand
sensory function are poorly understood. First, the neural basis of touch has been studied almost exclusively with
stimuli delivered passively to the skin, precluding any understanding of how tactile signals are modulated by and
interact with motor commands. Second, proprioceptive signals carry information not only about the time-varying
conformation of the hand, but also about manually applied forces, but proprioceptive representations of force
are poorly understood. Third, stereognosis – the sense of the three-dimensional shape of objects acquired from
sensory signals arising from the hand – implies the integration of tactile and proprioceptive signals, a process
about which little is known. The study of active touch, hand proprioception, and stereognosis has been hindered
by technical obstacles. Indeed, characterizing self-generated contact with objects has been difficult or
impossible, as has tracking hand movements with sufficient precision. To overcome these obstacles, my team
has developed an apparatus that allows us to measure contact events – with a sensor sheet covering the object’s
surface – and track time-varying hand postures – using deep learning-based computer vision – with
unprecedented precision as animals interact with objects. We then characterize the responses at every stage
along the somatosensory neuraxis, from peripheral nerve through cortex. This novel experimental set up will
allow us to study the neural basis of somatosensation – particularly as it relates to manual dexterity – under
ecologically valid conditions.
In a related line of inquiry, we leverage what we learn about sensory processing to restore the sense of touch to
bionic hands. In brief, we develop algorithms to convert the output of sensors on the bionic hand into patterns of
electrical stimulation of the peripheral nerve (for amputees) or of somatosensory cortex (for people with
tetraplegia) to evoke meaningful tactile percepts. I am one of the principal architects of the biomimetic approach
to artificial touch, which posits that encoding algorithms that mimic natural neural signals will give rise to more
intuitive tactile percepts, thereby endowing bionic hands with greater dexterity. Our work on artificial touch
comprises three components: evaluation of the perceptual correlates of electrical stimulation, development of
sensory encoding algorithms, and assessment of the benefits of artificial touch to manual behavior. The interplay
of the basic scientific results and neural engineering efforts will result in more naturalistic artificial touch for brain-
controlled bionic hands.
项目概要
手动行为需要来自手的感觉信号,包括触觉信号和本体感觉信号,正如
由体感传入神经阻滞导致的严重缺陷 手部感觉成分的三个方面。
首先,人们对感觉功能知之甚少。
刺激被动地传递到皮肤,无法理解触觉信号是如何调节的
其次,本体感受信号不仅携带有关时变的信息。
手的构造,还涉及手动施加的力,以及力的本体感觉表征
第三,立体感——从物体中获得的三维形状的感觉。
来自手的感觉信号——意味着触觉和本体感觉信号的整合,一个过程
主动触觉、手部本体感觉和立体认知的研究受到了阻碍。
事实上,描述与物体的自生接触一直很困难或困难。
不可能,因为以足够的精度跟踪手部运动是不可能的,为了克服这些障碍,我的团队
开发了一种设备,使我们能够测量接触事件 - 用覆盖物体的传感器片
表面 - 并跟踪随时间变化的手势 - 使用基于深度学习的计算机视觉 - 与
然后我们描述动物与物体相互作用时的精确性。
沿着体感神经轴,从周围神经穿过皮层。
让我们能够研究体感的神经基础——特别是与手的灵活性相关的——
生态有效条件。
在相关的探究中,我们利用我们所学到的感官处理知识来恢复触觉
简而言之,我们开发了将仿生手上传感器的输出转换为模式的算法。
周围神经(对于截肢者)或体感皮层(对于患有以下疾病的人)的电刺激
四肢瘫痪)来唤起有意义的触觉感知我是仿生方法的主要设计师之一。
人工触摸,模仿自然神经信号的编码算法将产生更多
直观的触觉感知,从而赋予仿生手更大的灵活性。
包括三个部分:电刺激知觉相关性的评估、
感觉编码算法,以及评估人工触摸对手动行为的相互作用的好处。
基础科学成果和神经工程努力将为大脑带来更自然的人工触摸
受控仿生手。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SLIMAN BENSMAIA其他文献
SLIMAN BENSMAIA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SLIMAN BENSMAIA', 18)}}的其他基金
The interplay between kinematic and force representations in motor and somatosensory cortices during reaching, grasping, and object transport
伸手、抓握和物体运输过程中运动和体感皮层运动学和力表征之间的相互作用
- 批准号:
10357463 - 财政年份:2022
- 资助金额:
$ 109.46万 - 项目类别:
Sensory mechanisms of manual dexterity and their application to neuroprosthetics
手灵巧度的感觉机制及其在神经修复学中的应用
- 批准号:
10397682 - 财政年份:2021
- 资助金额:
$ 109.46万 - 项目类别:
Biomimetic Somatosensory Feedback through Intracorticalmicrostimulation
通过皮质内微刺激的仿生体感反馈
- 批准号:
9277595 - 财政年份:2016
- 资助金额:
$ 109.46万 - 项目类别:
Hand proprioception and sensorimotor interplay
手本体感觉和感觉运动相互作用
- 批准号:
8619673 - 财政年份:2013
- 资助金额:
$ 109.46万 - 项目类别:
Hand proprioception and sensorimotor interplay
手本体感觉和感觉运动相互作用
- 批准号:
8811486 - 财政年份:2013
- 资助金额:
$ 109.46万 - 项目类别:
Hand proprioception and sensorimotor interplay
手本体感觉和感觉运动相互作用
- 批准号:
8483746 - 财政年份:2013
- 资助金额:
$ 109.46万 - 项目类别:
Hand proprioception and sensorimotor interplay
手本体感觉和感觉运动相互作用
- 批准号:
9035440 - 财政年份:2013
- 资助金额:
$ 109.46万 - 项目类别:
Cortical Processing of Tactual Spacial Information
触觉空间信息的皮层处理
- 批准号:
8043538 - 财政年份:1983
- 资助金额:
$ 109.46万 - 项目类别:
Cortical Processing of Tactual Spacial Information
触觉空间信息的皮层处理
- 批准号:
7559654 - 财政年份:1983
- 资助金额:
$ 109.46万 - 项目类别:
Cortical Processing of Tactual Spacial Information
触觉空间信息的皮层处理
- 批准号:
7454067 - 财政年份:1983
- 资助金额:
$ 109.46万 - 项目类别:
相似国自然基金
地表与大气层顶短波辐射多分量一体化遥感反演算法研究
- 批准号:42371342
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
高速铁路柔性列车运行图集成优化模型及对偶分解算法
- 批准号:72361020
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
随机密度泛函理论的算法设计和分析
- 批准号:12371431
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于全息交通数据的高速公路大型货车运行风险识别算法及主动干预方法研究
- 批准号:52372329
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
强磁场作用下两相铁磁流体动力学相场模型的高精度数值算法研究
- 批准号:12361074
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
相似海外基金
Sensory mechanisms of manual dexterity and their application to neuroprosthetics
手灵巧度的感觉机制及其在神经修复学中的应用
- 批准号:
10397682 - 财政年份:2021
- 资助金额:
$ 109.46万 - 项目类别:
Sensory mechanisms of manual dexterity and their application to neuroprosthetics
手灵巧度的感觉机制及其在神经修复学中的应用
- 批准号:
10642915 - 财政年份:2021
- 资助金额:
$ 109.46万 - 项目类别:
Computational Design, Fabrication, and Evaluation of Optimized Patient-Specific Transtibial Prosthetic Sockets
优化的患者专用跨胫假肢接受腔的计算设计、制造和评估
- 批准号:
9753235 - 财政年份:2017
- 资助金额:
$ 109.46万 - 项目类别:
Effect of Prosthetic Socket Design on Residual Limb Motion using Biplane X-Ray Video
使用双平面 X 射线视频研究假肢接受腔设计对残肢运动的影响
- 批准号:
9920006 - 财政年份:2016
- 资助金额:
$ 109.46万 - 项目类别:
Understanding Real-Life Falls in Amputees using Mobile Phone Technology
使用移动电话技术了解截肢者现实生活中的跌倒情况
- 批准号:
8738041 - 财政年份:2014
- 资助金额:
$ 109.46万 - 项目类别: