Neuron-SELEX: Development of neuron-specific nanoscale toolkits for single-cell recognition
Neuron-SELEX:开发用于单细胞识别的神经元特异性纳米级工具包
基本信息
- 批准号:10267032
- 负责人:
- 金额:$ 41.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-30 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AblationAddressAnimalsAntibodiesAplysiaAxonBar CodesBenzeneBindingBrainCellsChemical EvolutionChemicalsComplexDNADataDiagnosticDiseaseElectroporationEtiologyEvolutionExperimental ModelsFine needle aspiration biopsyFlareFluorescent ProbesGenomeGenomicsGlutamatesHeterogeneityHybridsIn Situ HybridizationIn VitroInfrastructureInjectionsInterneuronsKnowledgeLabelLibrariesLigandsMapsMass Spectrum AnalysisMembraneMembrane ProteinsMemoryMicellesModelingMolecularMolecular ProbesMolecular TargetMotor NeuronsNervous system structureNeurogliaNeurologicNeuronsNociceptorsNucleic AcidsOrganPhenotypePopulationProcessProteomicsPublishingReporterResearchSynapsesSystemTechnologyTestingTimeTransgenic AnimalsViralVisualizationanalogaptamerbasebiomarker discoverycell typecholinergiccost efficientdesignexperimental studyfluorophorein vivomolecular manufacturingmultidisciplinarynanoprobenanoscalenanotoolneural circuitneuron developmentneuropathologynew technologynovelnucleic acid analognucleobaseoptogeneticspersonalized medicinepostsynapticpostsynaptic neuronsreceptorrelating to nervous systemsingle-cell RNA sequencingtechnology developmenttoolvirtual
项目摘要
Project Summary
All neurons are remarkably different and existing approaches do not allow de novo visualization
of specific living cells in intact brains, without laborious tasks of making transgenic animals. The project will
address this grand challenge: our interdisciplinary team will develop and validate novel nanoscopic probes,
to rapidly (<30 min) label specific neurons within highly heterogeneous cell populations. For these
applications, in vitro neuronal selection Neuro-SELEX (systematic evolution of ligands by exponential
enrichment) will be used to generate libraries of nucleic acid-based probes. These aptamer-based tools
will also serve as “pull-out” molecular constructs to identify cell-specific membrane proteins associated with
unique neuronal identity and wiring. As a result, this research will provide a broad spectrum of advanced
nanotools to decipher the organization of neural circuits at the level of single cells and their compartments.
Our preliminary data indicate that the Neuro-SELEX can produce multipurpose toolkits to uniquely
map specific neurons or axons without a priori knowledge about their molecular diversity in the intact
nervous system. These results, together with our published data, provide the scientific premise for three
proof-of-the-concept aims. Arguably, Aplysia is a very powerful experimental model for such technology
development. First, to selectively label identified neurons and glial cells, hybrid fluorescent aptamers will
be generated using chemical evolution for neuron-specific selection. We will develop a high-throughput
cost-efficient system to manufacture molecular probes at a large scale, targeting each key, functionally
identified, neuron within a simple-memory forming circuit. Second, we will design fluorescent probes (e.g.,
modified nucleic acids with fluorophores) for multiplex labeling of several neuronal cell types in vivo. This
bar-coding would allow simultaneous visualization of pre- and postsynaptic partners within the same circuit
in real time. Furthermore, these probes will be chemically modified to self-deliver molecular constructs into
hundreds of target cells without the needs of direct injection, electroporation or making transgenic animals.
Third, in proteomic experiments, we will utilize these probes as specific binding tags or ligands to capture
and identify membrane proteins specific for each neuronal type of the model circuit including possible
synaptic components and receptors.
These versatile nanoprobes, with high selectivity and high-throughput fabrication capabilities, will
be resourceful to test causality relationships between cellular genomes and complex neuronal phenotypes.
Technologies and infrastructure should be applicable to virtually all animal cell types and organs. In
perspective, novel fluorescent markers and molecular reporters can be used in early diagnostics and
therapy for a broad spectrum of neurological and cell-specific disorders as well as in personalized medicine.
项目摘要
所有神经元都非常不同,现有方法不允许从头可视化
完整大脑中特定的活细胞,没有生产转基因动物的实验室任务。该项目将
应对这个大挑战:我们的跨学科团队将发展并验证新颖的纳米镜问题,
在高度异质细胞群体中快速(<30分钟)的特定神经元。为此
应用,体外神经选择神经螺旋(通过指数对配体的系统演变
富集将用于产生基于核酸的问题的文库。这些基于APATMER的工具
还将用作“拉出”分子构建体,以识别与细胞特异性的膜蛋白
独特的神经元身份和接线。结果,这项研究将提供广泛的高级
纳米方在单个细胞及其隔室的水平上破译神经回路的组织。
我们的初步数据表明神经 - 塞雷克斯可以产生多功能工具包以唯一
绘制特定的神经元或轴突,没有关于其完整分子多样性的先验知识
神经系统。这些结果以及我们已发布的数据提供了三个的科学前提
概念证明的目的。可以说,Aplysia是此类技术的非常强大的实验模型
发展。首先,为了有选择地标记确定的神经元和神经胶质细胞,杂交荧光体适体将
可以使用化学演化进行神经特异性选择产生。我们将开发高通量
具有成本效益的系统,以大规模制造分子问题,针对每个钥匙,功能
在简单的内存形成电路中识别出神经元。其次,我们将设计荧光探针(例如,
用荧光团修饰的核酸)用于体内几种神经元细胞类型的多次标记。这
条形码将允许在同一电路中简单地可视化前和突触后伴侣
实时。此外,这些问题将在化学上修改为自托分子构建体
数百个目标细胞无需直接注射,电穿孔或制造转基因动物。
第三,在蛋白质组学实验中,我们将使用这些问题作为特定的结合标签或配体来捕获
并确定针对模型电路的每种神经元类型的膜蛋白
突触组件和接收器。
这些具有高选择性和高通量制造能力的多功能纳米探针将
足智多谋测试细胞基因组与复杂神经元表型之间的休闲关系。
技术和基础设施应适用于几乎所有动物细胞类型和器官。在
透视图,新颖的荧光标记和分子记者可用于早期诊断和
多种神经和细胞特异性疾病以及个性化医学的治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
LEONID L MOROZ其他文献
LEONID L MOROZ的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('LEONID L MOROZ', 18)}}的其他基金
Neuron-SELEX: Development of neuron-specific nanoscale toolkits for single-cell recognition
Neuron-SELEX:开发用于单细胞识别的神经元特异性纳米级工具包
- 批准号:
10471341 - 财政年份:2020
- 资助金额:
$ 41.57万 - 项目类别:
Neuron-SELEX: Development of neuron-specific nanoscale toolkits for single-cell recognition
Neuron-SELEX:开发用于单细胞识别的神经元特异性纳米级工具包
- 批准号:
10657633 - 财政年份:2020
- 资助金额:
$ 41.57万 - 项目类别:
Spatial Organization of the Genome in Identified Neurons of Memory Circuits
已识别的记忆回路神经元基因组的空间组织
- 批准号:
8010275 - 财政年份:2010
- 资助金额:
$ 41.57万 - 项目类别:
Spatial Organization of the Genome in Identified Neurons of Memory Circuits
已识别的记忆回路神经元基因组的空间组织
- 批准号:
8080501 - 财政年份:2010
- 资助金额:
$ 41.57万 - 项目类别:
NOS-INDEPENDENT NO PRODUCTION IN THE NERVOUS SYSTEM
神经系统中不产生 NOS 独立性
- 批准号:
6394221 - 财政年份:1999
- 资助金额:
$ 41.57万 - 项目类别:
NOS-INDEPENDENT NO PRODUCTION IN THE NERVOUS SYSTEM
神经系统中不产生 NOS 独立性
- 批准号:
2899203 - 财政年份:1999
- 资助金额:
$ 41.57万 - 项目类别:
NOS-INDEPENDENT NO PRODUCTION IN THE NERVOUS SYSTEM
神经系统中不产生 NOS 独立性
- 批准号:
6540159 - 财政年份:1999
- 资助金额:
$ 41.57万 - 项目类别:
NOS-INDEPENDENT NO PRODUCTION IN THE NERVOUS SYSTEM
神经系统中不产生 NOS 独立性
- 批准号:
6188311 - 财政年份:1999
- 资助金额:
$ 41.57万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
In vivo feasibility of a smart needle ablation treatment for liver cancer
智能针消融治疗肝癌的体内可行性
- 批准号:
10699190 - 财政年份:2023
- 资助金额:
$ 41.57万 - 项目类别:
Optical platform for functional longitudinal imaging of metabolite uptake in vivo
用于体内代谢物摄取功能纵向成像的光学平台
- 批准号:
10585764 - 财政年份:2023
- 资助金额:
$ 41.57万 - 项目类别:
LRP1 as a novel regulator of CXCR4 in adult neural stem cells and post-stroke response
LRP1 作为成体神经干细胞和中风后反应中 CXCR4 的新型调节剂
- 批准号:
10701231 - 财政年份:2023
- 资助金额:
$ 41.57万 - 项目类别:
Multiphon imaging for understanding social brain function in tadpoles
多声子成像用于了解蝌蚪的社交脑功能
- 批准号:
10717610 - 财政年份:2023
- 资助金额:
$ 41.57万 - 项目类别:
Multi-tissue type condensations for trachea tissue regeneration via individual cell bioprinting
通过单细胞生物打印进行气管组织再生的多组织类型浓缩
- 批准号:
10643041 - 财政年份:2023
- 资助金额:
$ 41.57万 - 项目类别: