Predicting Stroke Risk in Intracranial Atherosclerotic Disease with Novel High Resolution,Functional and Molecular MRI Techniques - Resubmission - 1

利用新型高分辨率、功能性和分子 MRI 技术预测颅内动脉粥样硬化疾病的中风风险 - 重新提交 - 1

基本信息

  • 批准号:
    10249333
  • 负责人:
  • 金额:
    $ 61.18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Project Summary/Abstract The long-term goal of this work is to reduce the incident of stroke by identifying the most vulnerable patients using MRI scans. Currently roughly 1 of every 8 patient who have had an initial stroke from intracranial atherosclerosis disease (ICAD) will suffer a second stroke within a year. Patients who are likely to fail medical management have loss of cerebrovascular reserve, poor collateral arterial blood supply, and/or plaque that is vulnerable to rupture from active macrophage infiltration. Our goal is to identify vulnerable patients to inform the selection for new medical management protocols, stenting or stent-less angioplasty. We will develop a suite of new MRI scans and evaluate them in the intended patient population, comparing to reference standard CO2 Challenge CVR, HMPAO SPECT or direct imaging of active macrophages. Significance: ICAD is one of the most common causes of stroke worldwide and carries an extremely a high risk of recurrent stroke. ICAD patients with severe stenosis (70 to 99%) are at particularly high risk for recurrent stroke in the vascular territory of the stenosis (~12 to 20% within 12 months) despite treatment with aspirin, Plavix and management of risk factors (hypertension, smoking etc). The use of new, preventative treatment including angioplasty, new anti-platelet medication would benefit if the most vulnerable patient can be identified. Our imaging biomarkers will improve risk stratification for the of stroke in a vulnerable, high risk population. Innovation: We have developed time resolve MRI scans that are targeted to risk factor of stroke in ICAD: (1) Cardiac Gated “Snapshot” images of transient changes in the cerebral vasculature in response to arterial pressure changes induced by the cardiac cycle. These changes are muted by a loss of cerebrovascular reserve a risk fact of stroke. (2) A new mathematical deconvolution algorithm based on linear time-invariant system theory to quantify perfusion supplied to a vascular bed through collateral arterial blood supply distal to a stenosis. (3) First ever high-resolution permeability of the intracranial arterial walls to identify macrophage infiltration. Scientific Rigor: The geometry of the human head and topology of the vasculature are unique, and we therefore perform all our studies in the intended patient population: humans with ICAD. To ensure scientific rigor, we will compare directly to reference standard values of CO2 cerebrovascular reserve, collateral arterial supply, and macrophage infiltration in plaques. Probability of Success: We have built a strong, multi-disciplinary team with a long track record of successful, collaborative neurovascular research. We believe this high probability of successful completion of the aims and high likelihood of clinical translation.
项目概要/摘要 这项工作的长期目标是通过识别最脆弱的患者来减少中风的发生率 目前,大约每 8 名患有颅内中风的患者中就有 1 名使用 MRI 扫描。 动脉粥样硬化症(ICAD)患者可能会在一年内遭受第二次中风。 管理有脑血管储备丧失、侧支动脉血供不良和/或斑块 容易因活跃的巨噬细胞浸润而破裂。我们的目标是识别易受影响的患者,以告知他们。 我们将开发一套新的医疗管理方案、支架置入术或无支架血管成形术。 新的 MRI 扫描并在目标患者群体中进行评估,与参考标准 CO2 进行比较 挑战 CVR、HMPAO SPECT 或活性巨噬细胞的直接成像。 意义:ICAD是全球最常见的中风原因之一,具有极高的风险 患有严重狭窄(70% 至 99%)的复发性中风患者的复发风险特别高。 尽管使用阿司匹林治疗,狭窄血管区域仍发生中风(12 个月内约 12% 至 20%), 波立维和危险因素的管理(高血压、吸烟等)。 包括血管成形术在内,如果能够确定最脆弱的患者,新的抗血小板药物将会受益。 我们的成像生物标志物将改善脆弱、高风险人群中风的风险分层 人口。 创新:我们开发了针对 ICAD 中风危险因素的时间分辨 MRI 扫描: (1) 心门控“快照”图像,显示脑脉管系统响应动脉的瞬时变化 心动周期引起的压力变化会因脑血管的丧失而减弱。 保留中风的危险事实。 (2)基于线性时不变系统理论量化的新型数学反卷积算法 通过狭窄远端的侧支动脉血供向血管床提供灌注。 (3) 首次通过高分辨率颅内动脉壁渗透性来识别巨噬细胞浸润。 科学严谨:人体头部的几何形状和脉管系统的拓扑结构是独特的,因此我们 在目标患者人群中进行我们的所有研究:患有 ICAD 的人 为了确保科学严谨性,我们将。 直接与CO2脑血管储备、侧支动脉供应和参考标准值进行比较 斑块内巨噬细胞浸润。 成功的可能性:我们建立了一支强大的多学科团队,拥有长期的成功记录, 我们相信成功完成目标和合作的神经血管研究的可能性很高。 临床转化的可能性很高。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sameer A Ansari其他文献

Sameer A Ansari的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sameer A Ansari', 18)}}的其他基金

Motion-Resistant Background Subtraction Angiography with Deep Learning: Real-Time, Edge Hardware Implementation and Product Development
具有深度学习的抗运动背景减影血管造影:实时、边缘硬件实施和产品开发
  • 批准号:
    10602275
  • 财政年份:
    2023
  • 资助金额:
    $ 61.18万
  • 项目类别:
Non-invasive Evaluation of Intracranial Atherosclerotic Disease Using Hemodynamic Biomarkers
使用血流动力学生物标志物对颅内动脉粥样硬化疾病进行无创评估
  • 批准号:
    10687912
  • 财政年份:
    2020
  • 资助金额:
    $ 61.18万
  • 项目类别:
Predicting Stroke Risk in Intracranial Atherosclerotic Disease with Novel High Resolution,Functional and Molecular MRI Techniques - Resubmission - 1
利用新型高分辨率、功能性和分子 MRI 技术预测颅内动脉粥样硬化疾病的中风风险 - 重新提交 - 1
  • 批准号:
    10472015
  • 财政年份:
    2020
  • 资助金额:
    $ 61.18万
  • 项目类别:
Non-invasive Evaluation of Intracranial Atherosclerotic Disease Using Hemodynamic Biomarkers
使用血流动力学生物标志物对颅内动脉粥样硬化疾病进行无创评估
  • 批准号:
    10471925
  • 财政年份:
    2020
  • 资助金额:
    $ 61.18万
  • 项目类别:
Non-invasive Evaluation of Intracranial Atherosclerotic Disease Using Hemodynamic Biomarkers
使用血流动力学生物标志物对颅内动脉粥样硬化疾病进行无创评估
  • 批准号:
    10248545
  • 财政年份:
    2020
  • 资助金额:
    $ 61.18万
  • 项目类别:
Predicting Stroke Risk in Intracranial Atherosclerotic Disease with Novel High Resolution,Functional and Molecular MRI Techniques - Resubmission - 1
利用新型高分辨率、功能性和分子 MRI 技术预测颅内动脉粥样硬化疾病的中风风险 - 重新提交 - 1
  • 批准号:
    10053118
  • 财政年份:
    2020
  • 资助金额:
    $ 61.18万
  • 项目类别:
High Resolution and Functional MRI Assessment of Intracranial Atherosclerotic Plaque
颅内动脉粥样硬化斑块的高分辨率和功能性 MRI 评估
  • 批准号:
    9260043
  • 财政年份:
    2016
  • 资助金额:
    $ 61.18万
  • 项目类别:
Risk Assessment of Cerebral Aneurysm Growth with 4D flow MRI
使用 4D 流 MRI 评估脑动脉瘤生长的风险
  • 批准号:
    10673860
  • 财政年份:
    2013
  • 资助金额:
    $ 61.18万
  • 项目类别:
Risk Assessment of Cerebral Aneurysm Growth with 4D flow MRI
使用 4D 流 MRI 评估脑动脉瘤生长的风险
  • 批准号:
    10231251
  • 财政年份:
    2013
  • 资助金额:
    $ 61.18万
  • 项目类别:
Risk Assessment of Cerebral Aneurysm Growth with 4D flow MRI
使用 4D 流 MRI 评估脑动脉瘤生长的风险
  • 批准号:
    10460348
  • 财政年份:
    2013
  • 资助金额:
    $ 61.18万
  • 项目类别:

相似海外基金

Enhanced Medication Management to Control ADRD Risk Factors Among African Americans and Latinos
加强药物管理以控制非裔美国人和拉丁裔的 ADRD 风险因素
  • 批准号:
    10610975
  • 财政年份:
    2023
  • 资助金额:
    $ 61.18万
  • 项目类别:
Testing a Memory-Based Hypothesis for Anhedonia
测试基于记忆的快感缺失假设
  • 批准号:
    10598974
  • 财政年份:
    2023
  • 资助金额:
    $ 61.18万
  • 项目类别:
Predicting Clinical Phenotypes in Crohn's Disease Using Machine Learning and Single-Cell 'omics
使用机器学习和单细胞组学预测克罗恩病的临床表型
  • 批准号:
    10586795
  • 财政年份:
    2023
  • 资助金额:
    $ 61.18万
  • 项目类别:
Polygenic risk stratification combined with mpMRI to identify clinically relevant prostate cancer
多基因风险分层结合 mpMRI 来识别临床相关的前列腺癌
  • 批准号:
    10610626
  • 财政年份:
    2023
  • 资助金额:
    $ 61.18万
  • 项目类别:
Leveraging Pathogen-Host Networks to Identify Virus-specific and Estradiol-regulated Mechanisms during Respiratory Infection
利用病原体宿主网络来识别呼吸道感染期间的病毒特异性和雌二醇调节机制
  • 批准号:
    10741119
  • 财政年份:
    2023
  • 资助金额:
    $ 61.18万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了