Predicting Clinical Phenotypes in Crohn's Disease Using Machine Learning and Single-Cell 'omics
使用机器学习和单细胞组学预测克罗恩病的临床表型
基本信息
- 批准号:10586795
- 负责人:
- 金额:$ 71.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-01 至 2027-04-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAge YearsAlgorithmsAnemiaAutoimmuneAutomobile DrivingBehaviorBenchmarkingBiopsyCellsChildhoodChromosome MappingChronicClassificationClinicalClinical ManagementComplexComplicationComputer ModelsCrohn&aposs diseaseDataData SetDevelopmentDiagnosisDiagnosticDiseaseDisease ManagementDisease OutcomeDisease ProgressionDisease ResistanceEarly treatmentEnrollmentEvaluationFistulaFunctional disorderFutureGastrointestinal DiseasesGastrointestinal tract structureGene ExpressionGene Expression ProfileGenesGeneticGoalsHealthHistologyHistopathologyImage AnalysisIncidenceInflammatoryInterventionKnowledgeLiteratureMachine LearningMalabsorption SyndromesMapsMetadataMethodologyMethodsMicroscopicModelingMolecularMorphologyMucous MembraneNewly DiagnosedOperative Surgical ProceduresOutcomePathologicPatientsPatternPediatric Crohn&aposs diseasePenetrationPerformancePhenotypePhysical shapePredictive ValuePreventionProspective cohortPublishingRelapseReportingResearchResolutionReview LiteratureRiskSensitivity and SpecificitySeveritiesSlideTNF geneTestingTherapeutic InterventionTimeTissue ExtractsTissuesTrainingTranslationsVisualizationWorkaccurate diagnosticsadverse outcomeage groupbench to bedsidebiobankbiomedical imagingclinical careclinical phenotypeclinical practiceclinical predictorsclinically relevantcohortcostdisease phenotypefeature detectiongenetic signatureimprovedindividual patientindividualized medicineinnovationmachine learning methodmachine learning modelmachine learning predictionmodel buildingnoveloutcome predictionpersonalized diagnosticspersonalized interventionpersonalized medicineprecision medicinepredictive modelingpredictive toolspreventpreventive interventionprognosticprospectivepsychosocialrecruitresponserisk prediction modelsingle-cell RNA sequencingspatial integrationstandard of caretranscriptomicstreatment response
项目摘要
PROJECT SUMMARY/ABSTRACT
Pediatric Crohn's disease presents as a chronic, relapsing inflammatory condition of the gastrointestinal tract,
leading to malabsorption, anemia, and psychosocial decline. The incidence rate of Crohn's disease has been
growing in the 10- to 18-year age group. Crohn’s disease exists on a spectrum of clinical severity, ranging from
mild disease responsive to standard anti-TNFɑ therapy to severe, treatment-resistant disease with stricturing
(B2) or penetrating (B3) complications often requiring surgical intervention. Distinguishing which patients will
progress to more severe disease from patients who will require minimal intervention at the time of diagnosis is
an urgent unmet need. Accurate and automated prediction of disease outcomes will significantly improve patient
health by informing personalized interventions for individual patients. Previous attempts at generating predictive
models of Crohn’s disease relying solely on clinical features of the disease and patient biodata have
demonstrated promising, yet inadequate accuracies for clinical practice applications. This proposal addresses
these limitations by leveraging large cohorts of archival and prospective patient clinical metadata, ‘omics, and
machine learning derived tissue features to build and test machine learning models for predicting specific Crohn's
disease outcomes. In Aim 1, we will build, test, and validate predictive models of Crohn’s disease using
computational image analysis of gold-standard biopsy histopathology slides. We will use saliency maps and
gene correlations analysis to validate our models by visualizing the tissue features of importance to our predictive
models and identify specific transcriptomic changes associated with these features. In Aim 2, we will generate
a clinically-relevant predictive model of Crohn’s disease by integrating the deep features extracted from histology
image analysis with other patient metadata collected as part of standard clincal care. Additionally, we will collate
a thorough list of published predictive models of Crohn's disease to benchmark the performance of our proposed
and future predictive models. Lastly, in Aim 3 we will use cutting edge single-cell RNA sequencing and spatial
transcriptomics approaches to elucidate a transcriptomic signature of Crohn's disease and characterize specific
genetic profiles associated with the hallmark morphological changes in diseased tissue. These data will provide
a framework for studying the subtypes and clinical outcomes of Crohn’s disease and other gastrointestinal
diseases, thus driving the clinical adaptation of personalized therapy and precision medicine. This proposed
research will increase the resolution of both diagnostic and prognostic information to better manage Crohn’s
disease in patients and significantly shft clinical management to an individualized treatment paradigm.
项目摘要/摘要
小儿克罗恩病是胃肠道的慢性炎症状况,
导致吸收不良,贫血和社会心理下降。克罗恩病的事件率已经
在10至18岁的年龄组中生长。克罗恩病在各种临床严重程度上存在
轻度疾病对标准抗TNF疗法有反应对严重的耐药性疾病的疾病
(B2)或穿透性(B3)并发症通常需要手术干预。区分哪些患者
在诊断时需要最少干预的患者的患者的进展是更严重的疾病
紧急的未满足需求。对疾病预后的准确和自动预测将显着改善患者
通过为个别患者提供个性化干预措施来了解健康。以前尝试产生预测性的尝试
克罗恩病模型仅依赖于疾病的临床特征和患者生物的模型
表现出希望,但对于临床实践应用的准确性不足。该提案解决了
通过利用大量档案和潜在的患者临床元数据,'omics和
机器学习派生的组织功能,用于构建和测试机器学习模型,以预测特定的克罗恩
疾病结果。在AIM 1中,我们将使用,测试和验证克罗恩病的预测模型
金标准活检组织病理学幻灯片的计算图像分析。我们将使用显着图,
基因相关分析通过可视化对我们的预测的重要性组织特征来验证我们的模型
模型并确定与这些特征相关的特定转录组变化。在AIM 2中,我们将产生
通过整合从组织学中提取的深度特征,一种与临床相关的克罗恩病预测模型
作为标准clincal护理的一部分收集的其他患者元数据的图像分析。此外,我们将合作
克罗恩病的已发表预测模型的详尽清单,以基准我们提案的绩效
和未来的预测模型。最后,在AIM 3中,我们将使用尖端单细胞RNA测序和空间
转录组方法阐明克罗恩病的转录组特征并表征了特定的特征
遗传特征与悬浮组织中标志性形态变化相关的遗传特征。这些数据将提供
研究克罗恩病和其他胃肠道的亚型和临床结果的框架
疾病,从而推动了个性化疗法和精度医学的临床适应。这提出了
研究将增加诊断和预后信息的分辨率,以更好地管理克罗恩
患者的疾病,以及对个性化治疗范式的SHFT临床管理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sana Syed其他文献
Sana Syed的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sana Syed', 18)}}的其他基金
Population-Based Characterization of Metabolic Pathways to Predict Pediatric Crohn's Disease Outcomes
基于人群的代谢途径特征预测儿童克罗恩病结果
- 批准号:
10418965 - 财政年份:2022
- 资助金额:
$ 71.24万 - 项目类别:
Population-Based Characterization of Metabolic Pathways to Predict Pediatric Crohn's Disease Outcomes
基于人群的代谢途径特征预测儿童克罗恩病结果
- 批准号:
10660989 - 财政年份:2022
- 资助金额:
$ 71.24万 - 项目类别:
Computational Characterization of Environmental Enteropathy
环境性肠病的计算表征
- 批准号:
10627838 - 财政年份:2019
- 资助金额:
$ 71.24万 - 项目类别:
Computational Characterization of Environmental Enteropathy
环境性肠病的计算表征
- 批准号:
10164762 - 财政年份:2019
- 资助金额:
$ 71.24万 - 项目类别:
Computational Characterization of Environmental Enteropathy
环境性肠病的计算表征
- 批准号:
10413870 - 财政年份:2019
- 资助金额:
$ 71.24万 - 项目类别:
相似国自然基金
无线供能边缘网络中基于信息年龄的能量与数据协同调度算法研究
- 批准号:62372118
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向年龄相关性黄斑变性诊断的迁移学习算法研究
- 批准号:62371328
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
基于信息年龄的自组网分布式及时信息调度算法研究
- 批准号:62102232
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
异质动态网络上年龄结构传染病模型及算法研究
- 批准号:11701348
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
视网膜年龄相关性黄斑病变OCT图像的三维分割算法研究
- 批准号:61401294
- 批准年份:2014
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
PREDICTING CARIES RISK IN UNDERSERVED CHILDREN, FROM TODDLERS TO THE SCHOOL-AGE YEARS, IN PRIMARY HEALTHCARE SETTINGS
预测初级医疗保健机构中从幼儿到学龄儿童的龋齿风险
- 批准号:
10361268 - 财政年份:2021
- 资助金额:
$ 71.24万 - 项目类别:
Predicting Caries Risk in Underserved Children, from Toddlers to the School-Age Years, in Primary Healthcare Settings
预测初级医疗机构中服务不足的儿童(从幼儿到学龄儿童)的龋齿风险
- 批准号:
9751077 - 财政年份:2011
- 资助金额:
$ 71.24万 - 项目类别:
Predicting Caries Risk in Underserved Children, from Toddlers to the School-Age Years, in Primary Healthcare Settings
预测初级医疗机构中服务不足的儿童(从幼儿到学龄儿童)的龋齿风险
- 批准号:
9976990 - 财政年份:2011
- 资助金额:
$ 71.24万 - 项目类别:
Predicting Caries Risk in Underserved Children, from Toddlers to the School-Age Years, in Primary Healthcare Settings
预测初级医疗机构中服务不足的儿童(从幼儿到学龄儿童)的龋齿风险
- 批准号:
10457019 - 财政年份:2011
- 资助金额:
$ 71.24万 - 项目类别:
Predicting Caries Risk in Underserved Children, from Toddlers to the School-Age Years, in Primary Healthcare Settings
预测初级医疗机构中服务不足的儿童(从幼儿到学龄儿童)的龋齿风险
- 批准号:
10213006 - 财政年份:2011
- 资助金额:
$ 71.24万 - 项目类别: