Non-invasive Evaluation of Intracranial Atherosclerotic Disease Using Hemodynamic Biomarkers

使用血流动力学生物标志物对颅内动脉粥样硬化疾病进行无创评估

基本信息

  • 批准号:
    10471925
  • 负责人:
  • 金额:
    $ 45.77万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

The proposed study will be based on a multimodal approach using 4D flow MRI, perfusion-weighted MRI (PWI), diffusion-weighted MRI (DWI) and high-resolution vessel wall imaging (VWI) together with patient information (demographics and clinical factors) to predict the risk of recurrent stroke of patients with intracranial atherosclerotic disease (ICAD) stenosis. This will allow integrating the vulnerability of the stenosis as well as the patient by assessing the hemodynamic impact, plaque stability, and stroke lesion pattern together with patient information into a prediction model. PWI will provide tissue perfusion, VWI will provide plaque stability, DWI will provide stroke lesion pattern and 4D flow MRI will provide macroscopic hemodynamics of the circle of Willis (CoW). We will concentrate on the following innovative developments: 4D flow MRI: In order to allow 4D flow MRI scanning with a high dynamic velocity range (necessary to measure slow and fast velocities simultaneously), we recently developed dual-venc 4D flow MRI. However, this method suffers from extended scan tome of an already long acquisition. We, therefore, aim to minimize scan time for dual-venc 4D flow MRI scan while using the required spatial resolution and volume coverage, targeting 5-10 minutes so that this sequence can be added to clinical protocols. We aim to achieve this by integrating compressed sensing acceleration. Rigorous testing of the sequence will be done in phantom experiments as well as in a healthy test-retest control study. Data Analysis and Outcome Prediction: Currently, the multi-modal information that can be acquired with MRI has not been combined and used for comprehensive prediction of recurrent stroke risk in ICAD. Information that can be acquired from different MRI modalities may be critical in characterizing ICAD patient status. We will develop a new analysis tool that combines all data into a single network graph. All imaging data will be reported relative to supplying the intracranial artery of the CoW by using the vascular territory region of interest analysis. This will allow gathering all imaging parameters in a network graph. In a cross-sectional patient study, we will use combined data to see if it enables differentiation between healthy subjects, ICAD subgroups. Patient Study: In Aim 3, we will develop a machine-learning algorithm to predict which of the patients are at risk of experiencing a recurrent stroke. In order to achieve this, we will enroll a total of 150 ICAD patients from two institutions (Northwestern Memorial Hospital and San Francisco General Hospital). The combined data from the four different MR modalities and all other patient information will be used to identify only the discriminative features. This will be realized by using support vector machine recursive feature elimination to rank features associated with the risk of an ischemic event. The SVM will be trained and tested using information from the patient's clinical follow-up as outcome measure. The outcome (ischemic event or death yes/no)) will enable the development of the SVM classifier to predict outcome.
拟议的研究将基于使用 4D 流 MRI、灌注加权 MRI 的多模式方法 (PWI)、弥散加权 MRI (DWI) 和高分辨率血管壁成像 (VWI) 与患者一起 预测颅内脑卒中患者复发性卒中风险的信息(人口统计学和临床​​因素) 动脉粥样硬化性疾病(ICAD)狭窄。这将允许整合狭窄的脆弱性以及 通过评估血流动力学影响、斑块稳定性和中风病变模式以及 将患者信息转化为预测模型。 PWI将提供组织灌注,VWI将提供斑块稳定性, DWI 将提供中风病变模式,4D 血流 MRI 将提供中风循环的宏观血流动力学 威利斯(CoW)。我们将重点关注以下创新发展: 4D 流 MRI:为了允许具有高动态速度范围的 4D 流 MRI 扫描(需要测量 同时慢速和快速),我们最近开发了双 venc 4D 流 MRI。然而,这种方法 遭受已经很长的采集的延长扫描时间的困扰。因此,我们的目标是尽量减少扫描时间 双 venc 4D 流 MRI 扫描,同时使用所需的空间分辨率和体积覆盖范围,目标为 5-10 分钟,以便将该序列添加到临床方案中。我们的目标是通过整合来实现这一目标 压缩传感加速度。将在模型实验中对序列进行严格的测试,如下所示 以及健康的重测对照研究。 数据分析和结果预测:目前,MRI可以获取的多模态信息 尚未合并并用于 ICAD 中复发性卒中风险的综合预测。信息 可以从不同 MRI 模式获得的信息可能对于表征 ICAD 患者状态至关重要。我们将 开发一种新的分析工具,将所有数据组合成一个网络图。所有成像数据将 报道与使用感兴趣的血管区域供应奶牛的颅内动脉有关 分析。这将允许收集网络图中的所有成像参数。在一项横断面患者研究中, 我们将使用组合数据来查看它是否能够区分健康受试者、ICAD 亚组。 患者研究:在目标 3 中,我们将开发一种机器学习算法来预测哪些患者面临风险 经历复发性中风。为了实现这一目标,我们将招募来自两个国家的总共 150 名 ICAD 患者。 机构(西北纪念医院和旧金山总医院)。综合数据来自 四种不同的 MR 模式和所有其他患者信息将用于仅识别有区别的 特征。这将通过使用支持向量机递归特征消除对特征进行排序来实现 与缺血事件的风险相关。 SVM 将使用来自的信息进行训练和测试 患者的临床随访作为结果衡量标准。结果(缺血事件或死亡是/否))将使 开发 SVM 分类器来预测结果。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sameer A Ansari其他文献

Sameer A Ansari的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sameer A Ansari', 18)}}的其他基金

Motion-Resistant Background Subtraction Angiography with Deep Learning: Real-Time, Edge Hardware Implementation and Product Development
具有深度学习的抗运动背景减影血管造影:实时、边缘硬件实施和产品开发
  • 批准号:
    10602275
  • 财政年份:
    2023
  • 资助金额:
    $ 45.77万
  • 项目类别:
Non-invasive Evaluation of Intracranial Atherosclerotic Disease Using Hemodynamic Biomarkers
使用血流动力学生物标志物对颅内动脉粥样硬化疾病进行无创评估
  • 批准号:
    10687912
  • 财政年份:
    2020
  • 资助金额:
    $ 45.77万
  • 项目类别:
Predicting Stroke Risk in Intracranial Atherosclerotic Disease with Novel High Resolution,Functional and Molecular MRI Techniques - Resubmission - 1
利用新型高分辨率、功能性和分子 MRI 技术预测颅内动脉粥样硬化疾病的中风风险 - 重新提交 - 1
  • 批准号:
    10472015
  • 财政年份:
    2020
  • 资助金额:
    $ 45.77万
  • 项目类别:
Predicting Stroke Risk in Intracranial Atherosclerotic Disease with Novel High Resolution,Functional and Molecular MRI Techniques - Resubmission - 1
利用新型高分辨率、功能性和分子 MRI 技术预测颅内动脉粥样硬化疾病的中风风险 - 重新提交 - 1
  • 批准号:
    10249333
  • 财政年份:
    2020
  • 资助金额:
    $ 45.77万
  • 项目类别:
Non-invasive Evaluation of Intracranial Atherosclerotic Disease Using Hemodynamic Biomarkers
使用血流动力学生物标志物对颅内动脉粥样硬化疾病进行无创评估
  • 批准号:
    10248545
  • 财政年份:
    2020
  • 资助金额:
    $ 45.77万
  • 项目类别:
Predicting Stroke Risk in Intracranial Atherosclerotic Disease with Novel High Resolution,Functional and Molecular MRI Techniques - Resubmission - 1
利用新型高分辨率、功能性和分子 MRI 技术预测颅内动脉粥样硬化疾病的中风风险 - 重新提交 - 1
  • 批准号:
    10053118
  • 财政年份:
    2020
  • 资助金额:
    $ 45.77万
  • 项目类别:
High Resolution and Functional MRI Assessment of Intracranial Atherosclerotic Plaque
颅内动脉粥样硬化斑块的高分辨率和功能性 MRI 评估
  • 批准号:
    9260043
  • 财政年份:
    2016
  • 资助金额:
    $ 45.77万
  • 项目类别:
Risk Assessment of Cerebral Aneurysm Growth with 4D flow MRI
使用 4D 流 MRI 评估脑动脉瘤生长的风险
  • 批准号:
    10673860
  • 财政年份:
    2013
  • 资助金额:
    $ 45.77万
  • 项目类别:
Risk Assessment of Cerebral Aneurysm Growth with 4D flow MRI
使用 4D 流 MRI 评估脑动脉瘤生长的风险
  • 批准号:
    10231251
  • 财政年份:
    2013
  • 资助金额:
    $ 45.77万
  • 项目类别:
Risk Assessment of Cerebral Aneurysm Growth with 4D flow MRI
使用 4D 流 MRI 评估脑动脉瘤生长的风险
  • 批准号:
    10460348
  • 财政年份:
    2013
  • 资助金额:
    $ 45.77万
  • 项目类别:

相似国自然基金

主动脉瓣介导的血流模式致升主动脉重构的4D Flow MRI可视化预测模型研究
  • 批准号:
    82071991
  • 批准年份:
    2020
  • 资助金额:
    56 万元
  • 项目类别:
    面上项目
基于4D Flow MRI探讨侧支循环影响颈内动脉重塑的机制研究
  • 批准号:
    81801139
  • 批准年份:
    2018
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
4D PC-MRI血流动力学参数与主动脉夹层假腔血栓化的关系及模拟预测研究
  • 批准号:
    81770474
  • 批准年份:
    2017
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目
基于4D血流MRI成像的左心房室流场变化介导的炎症反应在房颤心肌纤维化中的始动作用及机制研究
  • 批准号:
    81601462
  • 批准年份:
    2016
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Heart-brain MRI for the evaluation of hemodynamic coupling in aging and Alzheimer's disease
心脑 MRI 用于评估衰老和阿尔茨海默氏病的血流动力学耦合
  • 批准号:
    10571411
  • 财政年份:
    2023
  • 资助金额:
    $ 45.77万
  • 项目类别:
Mitral Regurgitation Quantification Using Dual-venc 4D flow MRI and Deep learning
使用 Dual-venc 4D 流 MRI 和深度学习对二尖瓣反流进行量化
  • 批准号:
    10648495
  • 财政年份:
    2023
  • 资助金额:
    $ 45.77万
  • 项目类别:
Dual-Venc 5D flow for Assessment of Congenital Heart Disease in Pediatrics
Dual-Venc 5D 流程用于评估儿科先天性心脏病
  • 批准号:
    10679809
  • 财政年份:
    2023
  • 资助金额:
    $ 45.77万
  • 项目类别:
Arrhythmia-resolved 5D Flow MRI in Atrial Fibrillation and Stroke
消除心律失常的 5D Flow MRI 在心房颤动和中风中的应用
  • 批准号:
    10761709
  • 财政年份:
    2022
  • 资助金额:
    $ 45.77万
  • 项目类别:
Arrhythmia-resolved 5D Flow MRI in Atrial Fibrillation and Stroke
消除心律失常的 5D Flow MRI 在心房颤动和中风中的应用
  • 批准号:
    10538265
  • 财政年份:
    2022
  • 资助金额:
    $ 45.77万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了