Novel pathways that regulate DNA double-strand break repair events in mammalian cells
调节哺乳动物细胞中 DNA 双链断裂修复事件的新途径
基本信息
- 批准号:10093685
- 负责人:
- 金额:$ 42.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-03-01 至 2026-01-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAgingBiochemistryBiological AssayCRISPR/Cas technologyCellsChromatinChromatin StructureDNADNA Double Strand BreakDNA RepairDNA Repair PathwayDNA biosynthesisDNA lesionDataDouble Strand Break RepairEventExcisionG1 PhaseGene ExpressionGenetic DiseasesGenetic ScreeningGenetic TranscriptionGenomeGenome StabilityGenomicsGoalsGuide RNAHistonesHuman GeneticsHuman bodyLibrariesLongevityMaintenanceMammalian CellMediatingMolecular GeneticsNonhomologous DNA End JoiningPathway interactionsPositioning AttributeProcessProteinsResearchRoleSaccharomycetalesSingle-Stranded DNAVisionbaseds-DNAgenome integritygenome-widehomologous recombinationinnovationnon-histone proteinnovelpreventprogramsrepairedscreeningstructural biologytissue culture
项目摘要
Summary Abstract
The overall vision for our research is to discover novel mechanisms by which histone and non-histone
proteins on DNA, i.e. chromatin, regulate genomic processes and aging. In particular, we strive to integrate
different fields, such as the role of chromatin in genome stability and the role of chromatin in aging. Using a
combination of biochemistry, structural biology, molecular genetics in budding yeast, tissue culture and
genome-wide approaches, we have discovered that chromatin is disassembled and reassembled during not
only gene expression and DNA replication but also during DNA double-strand break repair. We have
revealed the mechanistic bases for these events and their key impact on these genomic processes. In more
recent years, we have expanded the questions that we address beyond chromatin – for example uncovering
novel mechanistic bases of aging and discovering new ways to extend lifespan. Similarly, inspired by our
recent finding that chromatin structure reduces the processing of DNA double-strand breaks to single-strand
DNA (termed DNA end resection), we have devised innovative CRISPR/Cas9 gRNA library screening
approaches to identify novel activities that regulate DNA end resection during DNA double-strand repair.
Most of the cells in the human body are in G0/G1-phase and it is critical that excessive DNA end resection
does not occur in these cells. If it were to occur, it would block DNA repair by the only pathway that is used to
repair DNA double-strand breaks in G0/G1-phase cells, namely non-homologous end joining (NHEJ), and it
would result in translocations and deletions from the ensuing homology-mediated repair. Indeed, the extent
of DNA end resection is the critical decision point in the choice between using the NHEJ or homologous
recombination (HR) pathway for repairing DNA double-strand breaks. We propose that mechanisms must be
in place that limit excessive DNA end resection in G0/G1-phase cells to prevent HR, yet enable sufficient DNA
end processing of un-ligatable DNA ends to allow NHEJ-mediated repair. The proteins and pathways that
regulate the extent of DNA end resection in G0/G1-phase cells are currently unknown. Thus, a major goal of
this program is to discover the machinery and mechanisms that regulate DNA end resection in G0/G1-phase
cells. We are uniquely positioned to do this, based on our expertise, novel genetic screening approach and
compelling preliminary data.
Another critical, yet poorly understood, aspect of genome maintenance is how gene expression is
“shut-off” in the vicinity of a DNA lesion to prevent collisions between the transcription and DNA repair
machinery. Similarly, it is crucial that transcription is restarting after DNA double-strand break repair, but the
mechanism is unknown. We have recently discovered some of the proteins involved using our novel assays
and genetic screens, so the second major goal of this program is to discover the fundamental mechanisms of
transcriptional shut-off and restart around DNA double-strand breaks.
摘要 摘要
我们研究的总体愿景是发现组蛋白和非组蛋白的新机制
DNA 上的蛋白质(即染色质)调节基因组过程和衰老。
不同领域,例如染色质在基因组稳定性中的作用以及染色质在衰老中的作用。
生物化学、结构生物学、芽殖酵母分子遗传学、组织培养和
通过全基因组方法,我们发现染色质在非
不仅是基因表达和 DNA 复制,而且还包括 DNA 双链断裂修复过程。
揭示了这些事件的机制基础及其对这些基因组过程的关键影响。
近年来,我们将解决的问题扩展到染色质之外——例如揭示
衰老的新颖机制基础和发现延长寿命的新方法同样受到我们的启发。
最近发现染色质结构减少了 DNA 双链断裂到单链的加工
DNA(称为DNA末端切除),我们设计了创新的CRISPR/Cas9 gRNA文库筛选
方法来识别在 DNA 双链修复过程中调节 DNA 末端切除的新活性。
人体大部分细胞都处于G0/G1期,过度的DNA末端切除至关重要
这些细胞中不会发生这种情况,如果发生的话,它会通过唯一的途径来阻止 DNA 修复。
修复G0/G1期细胞中的DNA双链断裂,即非同源末端连接(NHEJ),
事实上,会导致随后的同源介导的修复的易位和缺失。
DNA 末端切除的效果是选择使用 NHEJ 或同源 DNA 的关键决策点
我们提出修复 DNA 双链断裂的重组 (HR) 途径。
限制 G0/G1 期细胞中过度 DNA 末端切除以防止 HR,但仍能提供足够的 DNA
对不可连接的 DNA 末端进行末端处理,以实现 NHEJ 介导的修复。
调节 G0/G1 期细胞 DNA 末端切除的程度目前尚不清楚。
该计划旨在发现调节 G0/G1 期 DNA 末端切除的机制和机制
凭借我们的专业知识、新颖的基因筛查方法和技术,我们拥有独特的优势来做到这一点。
令人信服的初步数据。
基因组维护的另一个关键但仍知之甚少的方面是基因表达是如何进行的
在 DNA 损伤附近“关闭”,以防止转录和 DNA 修复之间的冲突
同样,DNA 双链断裂修复后转录的重新开始也至关重要,但
我们最近使用我们的新检测方法发现了一些涉及的蛋白质。
和基因筛选,所以这个项目的第二个主要目标是发现的基本机制
DNA 双链断裂周围的转录关闭和重启。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jessica K Tyler其他文献
Jessica K Tyler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jessica K Tyler', 18)}}的其他基金
Discovering how autophagy is sufficient to extend yeast replicative lifespan
发现自噬如何足以延长酵母复制寿命
- 批准号:
10744971 - 财政年份:2023
- 资助金额:
$ 42.38万 - 项目类别:
2nd Biennial ASBMB - BSC Symposium on the Interplay between Epigenetic Regulation and Genome Integrity
第二届两年一度的 ASBMB - BSC 表观遗传调控与基因组完整性之间相互作用研讨会
- 批准号:
10540502 - 财政年份:2022
- 资助金额:
$ 42.38万 - 项目类别:
Novel pathways that regulate DNA double-strand break repair events in mammalian cells
调节哺乳动物细胞中 DNA 双链断裂修复事件的新途径
- 批准号:
10557230 - 财政年份:2021
- 资助金额:
$ 42.38万 - 项目类别:
Novel pathways that regulate DNA double-strand break repair events in mammalian cells
调节哺乳动物细胞中 DNA 双链断裂修复事件的新途径
- 批准号:
10360432 - 财政年份:2021
- 资助金额:
$ 42.38万 - 项目类别:
FASEB's The Reversible Protein Acetylation in Health and Disease Conference
FASEB 健康与疾病中的可逆蛋白质乙酰化会议
- 批准号:
10230422 - 财政年份:2021
- 资助金额:
$ 42.38万 - 项目类别:
Discovering the molecular mechanisms that determine replicative lifespan
发现决定复制寿命的分子机制
- 批准号:
9317795 - 财政年份:2017
- 资助金额:
$ 42.38万 - 项目类别:
FASEB Summer Conference on Transcriptional Regulation During Cell Growth
FASEB 细胞生长过程转录调控夏季会议
- 批准号:
7484009 - 财政年份:2008
- 资助金额:
$ 42.38万 - 项目类别:
Chromatin's Role in Repair of Radiation-induced Damage
染色质在修复辐射引起的损伤中的作用
- 批准号:
6747500 - 财政年份:2002
- 资助金额:
$ 42.38万 - 项目类别:
Chromatin's Role in Repair of Radiation-induced Damage.
染色质在修复辐射引起的损伤中的作用。
- 批准号:
7210170 - 财政年份:2002
- 资助金额:
$ 42.38万 - 项目类别:
相似国自然基金
ALA光动力上调炎症性成纤维细胞ZFP36抑制GADD45B/MAPK通路介导光老化皮肤组织微环境重塑的作用及机制研究
- 批准号:82303993
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
YAP1-TEAD通过转录调控同源重组修复介导皮肤光老化的作用机制
- 批准号:82371567
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
下丘脑乳头上核-海马齿状回神经环路在运动延缓认知老化中的作用及机制研究
- 批准号:82302868
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
微纳核壳结构填充体系构建及其对聚乳酸阻燃、抗老化、降解和循环的作用机制
- 批准号:52373051
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
KIAA1429介导MFAP4-m6A甲基化修饰在紫外线诱导皮肤光老化中的作用和机制研究
- 批准号:82373461
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Developmental regulation of the cell cycle machinery
细胞周期机制的发育调控
- 批准号:
10714634 - 财政年份:2023
- 资助金额:
$ 42.38万 - 项目类别:
Transcriptional Activation of p62 by the master antioxidant NRF2 in EBV latency
EBV潜伏期主要抗氧化剂NRF2对p62的转录激活
- 批准号:
10726975 - 财政年份:2023
- 资助金额:
$ 42.38万 - 项目类别:
Emerging Mechanisms of Replication-coupled DNA Repair
复制耦合 DNA 修复的新兴机制
- 批准号:
10720698 - 财政年份:2023
- 资助金额:
$ 42.38万 - 项目类别: