Novel pathways that regulate DNA double-strand break repair events in mammalian cells
调节哺乳动物细胞中 DNA 双链断裂修复事件的新途径
基本信息
- 批准号:10093685
- 负责人:
- 金额:$ 42.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-03-01 至 2026-01-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAgingBiochemistryBiological AssayCRISPR/Cas technologyCellsChromatinChromatin StructureDNADNA Double Strand BreakDNA RepairDNA Repair PathwayDNA biosynthesisDNA lesionDataDouble Strand Break RepairEventExcisionG1 PhaseGene ExpressionGenetic DiseasesGenetic ScreeningGenetic TranscriptionGenomeGenome StabilityGenomicsGoalsGuide RNAHistonesHuman GeneticsHuman bodyLibrariesLongevityMaintenanceMammalian CellMediatingMolecular GeneticsNonhomologous DNA End JoiningPathway interactionsPositioning AttributeProcessProteinsResearchRoleSaccharomycetalesSingle-Stranded DNAVisionbaseds-DNAgenome integritygenome-widehomologous recombinationinnovationnon-histone proteinnovelpreventprogramsrepairedscreeningstructural biologytissue culture
项目摘要
Summary Abstract
The overall vision for our research is to discover novel mechanisms by which histone and non-histone
proteins on DNA, i.e. chromatin, regulate genomic processes and aging. In particular, we strive to integrate
different fields, such as the role of chromatin in genome stability and the role of chromatin in aging. Using a
combination of biochemistry, structural biology, molecular genetics in budding yeast, tissue culture and
genome-wide approaches, we have discovered that chromatin is disassembled and reassembled during not
only gene expression and DNA replication but also during DNA double-strand break repair. We have
revealed the mechanistic bases for these events and their key impact on these genomic processes. In more
recent years, we have expanded the questions that we address beyond chromatin – for example uncovering
novel mechanistic bases of aging and discovering new ways to extend lifespan. Similarly, inspired by our
recent finding that chromatin structure reduces the processing of DNA double-strand breaks to single-strand
DNA (termed DNA end resection), we have devised innovative CRISPR/Cas9 gRNA library screening
approaches to identify novel activities that regulate DNA end resection during DNA double-strand repair.
Most of the cells in the human body are in G0/G1-phase and it is critical that excessive DNA end resection
does not occur in these cells. If it were to occur, it would block DNA repair by the only pathway that is used to
repair DNA double-strand breaks in G0/G1-phase cells, namely non-homologous end joining (NHEJ), and it
would result in translocations and deletions from the ensuing homology-mediated repair. Indeed, the extent
of DNA end resection is the critical decision point in the choice between using the NHEJ or homologous
recombination (HR) pathway for repairing DNA double-strand breaks. We propose that mechanisms must be
in place that limit excessive DNA end resection in G0/G1-phase cells to prevent HR, yet enable sufficient DNA
end processing of un-ligatable DNA ends to allow NHEJ-mediated repair. The proteins and pathways that
regulate the extent of DNA end resection in G0/G1-phase cells are currently unknown. Thus, a major goal of
this program is to discover the machinery and mechanisms that regulate DNA end resection in G0/G1-phase
cells. We are uniquely positioned to do this, based on our expertise, novel genetic screening approach and
compelling preliminary data.
Another critical, yet poorly understood, aspect of genome maintenance is how gene expression is
“shut-off” in the vicinity of a DNA lesion to prevent collisions between the transcription and DNA repair
machinery. Similarly, it is crucial that transcription is restarting after DNA double-strand break repair, but the
mechanism is unknown. We have recently discovered some of the proteins involved using our novel assays
and genetic screens, so the second major goal of this program is to discover the fundamental mechanisms of
transcriptional shut-off and restart around DNA double-strand breaks.
摘要摘要
我们研究的总体愿景是发现组蛋白和非历史的新型机制
DNA上的蛋白质,即染色质,调节基因组过程和衰老。特别是,我们努力整合
不同的领域,例如染色质在基因组稳定性中的作用以及染色质在衰老中的作用。使用
生物化学,结构生物学,萌芽酵母中的分子遗传学,组织培养和
全基因组的方法,我们发现染色质是拆卸和重新组装的
仅基因表达和DNA复制,而且在DNA双链断裂修复过程中。我们有
揭示了这些事件的机械基础及其对这些基因组过程的关键影响。更多
近年来,我们扩大了我们在染色质之外提出的问题 - 例如发现
衰老的新机械基础,并发现延长寿命的新方法。同样,受我们的启发
最近的发现,染色质结构减少了DNA双链破裂的加工到单链
DNA(称为DNA终端切除),我们设计了创新的CRISPR/CAS9 GRNA库筛选
鉴定在DNA双链修复过程中调节DNA终端切除的新型活动的方法。
人体中的大多数细胞都在G0/G1期间,至关重要的DNA末端切除至关重要
这些细胞不存在。如果发生,它将通过唯一用于的途径阻止DNA修复
修复G0/G1相细胞中的DNA双链断裂,即非理论末端连接(NHEJ),IT
将导致确保同源介导的维修的易位和缺失。确实,程度
DNA终端切除术是使用NHEJ或同源之间选择的关键决策点
修复DNA双链断裂的重组(HR)途径。我们建议机制必须是
限制G0/G1相细胞中多余的DNA末端切除以防止HR,但可以启用足够的DNA
最终处理不可粘的DNA末端,以允许NHEJ介导的修复。蛋白质和途径
目前未知,调节G0/G1相细胞中DNA末端切除的程度。那是一个主要目标
该程序是要发现调节G0/G1相调节DNA末端切除的机制和机制
细胞。根据我们的专业知识,新颖的遗传筛查方法,我们有独特的位置
引人入胜的初步数据。
基因组维持的另一个关键但知之甚少的方面是基因表达方式
DNA病变附近的“关闭”,以防止转录和DNA修复之间的碰撞
机械。同样,至关重要的是,在DNA双链破裂修复后,转录正在重新启动,但是
机制是未知的。我们最近发现了使用我们的新测定的一些蛋白质
和遗传筛选,因此该计划的第二个主要目标是发现
转录关闭并重新启动DNA双链断裂。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jessica K Tyler其他文献
Jessica K Tyler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jessica K Tyler', 18)}}的其他基金
Discovering how autophagy is sufficient to extend yeast replicative lifespan
发现自噬如何足以延长酵母复制寿命
- 批准号:
10744971 - 财政年份:2023
- 资助金额:
$ 42.38万 - 项目类别:
2nd Biennial ASBMB - BSC Symposium on the Interplay between Epigenetic Regulation and Genome Integrity
第二届两年一度的 ASBMB - BSC 表观遗传调控与基因组完整性之间相互作用研讨会
- 批准号:
10540502 - 财政年份:2022
- 资助金额:
$ 42.38万 - 项目类别:
Novel pathways that regulate DNA double-strand break repair events in mammalian cells
调节哺乳动物细胞中 DNA 双链断裂修复事件的新途径
- 批准号:
10557230 - 财政年份:2021
- 资助金额:
$ 42.38万 - 项目类别:
Novel pathways that regulate DNA double-strand break repair events in mammalian cells
调节哺乳动物细胞中 DNA 双链断裂修复事件的新途径
- 批准号:
10360432 - 财政年份:2021
- 资助金额:
$ 42.38万 - 项目类别:
FASEB's The Reversible Protein Acetylation in Health and Disease Conference
FASEB 健康与疾病中的可逆蛋白质乙酰化会议
- 批准号:
10230422 - 财政年份:2021
- 资助金额:
$ 42.38万 - 项目类别:
Discovering the molecular mechanisms that determine replicative lifespan
发现决定复制寿命的分子机制
- 批准号:
9317795 - 财政年份:2017
- 资助金额:
$ 42.38万 - 项目类别:
FASEB Summer Conference on Transcriptional Regulation During Cell Growth
FASEB 细胞生长过程转录调控夏季会议
- 批准号:
7484009 - 财政年份:2008
- 资助金额:
$ 42.38万 - 项目类别:
Chromatin's Role in Repair of Radiation-induced Damage
染色质在修复辐射引起的损伤中的作用
- 批准号:
6747500 - 财政年份:2002
- 资助金额:
$ 42.38万 - 项目类别:
Chromatin's Role in Repair of Radiation-induced Damage.
染色质在修复辐射引起的损伤中的作用。
- 批准号:
7210170 - 财政年份:2002
- 资助金额:
$ 42.38万 - 项目类别:
相似国自然基金
温度作用下CA砂浆非线性老化蠕变性能的多尺度研究
- 批准号:12302265
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于波动法的叠层橡胶隔震支座老化损伤原位检测及精确评估方法研究
- 批准号:52308322
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
微纳核壳结构填充体系构建及其对聚乳酸阻燃、抗老化、降解和循环的作用机制
- 批准号:52373051
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
东北黑土中农膜源微塑料冻融老化特征及其毒性效应
- 批准号:42377282
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
高层建筑外墙保温材料环境暴露自然老化后飞火点燃机理及模型研究
- 批准号:52376132
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Developmental regulation of the cell cycle machinery
细胞周期机制的发育调控
- 批准号:
10714634 - 财政年份:2023
- 资助金额:
$ 42.38万 - 项目类别:
Transcriptional Activation of p62 by the master antioxidant NRF2 in EBV latency
EBV潜伏期主要抗氧化剂NRF2对p62的转录激活
- 批准号:
10726975 - 财政年份:2023
- 资助金额:
$ 42.38万 - 项目类别:
Emerging Mechanisms of Replication-coupled DNA Repair
复制耦合 DNA 修复的新兴机制
- 批准号:
10720698 - 财政年份:2023
- 资助金额:
$ 42.38万 - 项目类别: