Developing next-generation genomically recoded organisms to synthetically activate biomarkers for drug discovery

开发下一代基因组重新编码的生物体以合成激活药物发现的生物标志物

基本信息

  • 批准号:
    10097168
  • 负责人:
  • 金额:
    $ 58.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-15 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY Healthy and diseased physiological states are governed by a complex web of interacting proteins that confer the collective behavior observed in cells. The precise placement and chemical composition of post-translational modifications (PTMs) decorated across proteins determines their structure, function, and impart specificity for cellular signaling. Current progress toward the elucidation of PTM-mediated signaling and function is hampered by the challenge of studying transient PTMs in cells and limited methods to produce proteins containing specific combinations of modified amino acids. Recent advances in synthetic and chemical biology have successfully demonstrated the ability to encode diverse nonstandard amino acids (nsAAs), including physiologically relevant PTMs, into proteins. In particular, recent advances in the development of genomically recoded organism (GROs) – recoded strains of E. coli with open coding channels – and engineered translation systems that encode PTMs (e.g., phosphoserine) have allowed activation of human phosphoproteins. These capabilities have precisely defined active protein states, map substrate networks, and implicate new function for disease-relevant mutations. However, two important challenges have emerged that preclude a comprehensive understanding of these protein networks and limit the translation of such insights into targeted clinical solutions. First, the precise arrangement and contributions of distinct PTMs that lead to active protein states is often unknown and hard to decipher. Second, the development of small molecules that target PTMs at molecular precision to modulate protein activity is a defining challenge for the development of new drugs. Specific Aims: In this proposal, we seek to leverage a strong foundation of genomic, biomolecular and proteomic technologies, expertise in systems and synthetic biology, and preliminary data to construct a genomically recoded organism (GRO) with three open codons in E. coli (Aim 1), engineer translational machinery that reassigns sense and stop codons for site-specific incorporation of multiple nonstandard amino acids that encode post-translational modifications into proteins (Aim 2), and utilize these technologies to develop a synthetic biology platform that synthetically activates disease-relevant protein networks targeted for isolation of new drug candidates (Aim 3). Significance: This work will be significant because it will enable the synthetic activation of physiologically relevant protein networks at the molecular level in GROs. These activated protein systems can elucidate complex biomolecular interactions that underlie disease and recapitulate human protein networks that are difficult to study and manipulate in their native contexts. Challenging these activated protein networks to small molecule libraries establishes a rapid and facile new approach to probe biomarkers at molecular specificity and sets the stage for a new synthetic-biology based drug discovery platform.
项目概要 健康和患病的生理状态由相互作用的蛋白质的复杂网络控制,这些蛋白质赋予 在细胞中观察到的集体行为。翻译后的精确位置和化学成分。 跨蛋白质修饰的修饰 (PTM) 决定其结构、功能并赋予其特异性 细胞信号传导。目前阐明 PTM 介导的信号传导和功能的进展是 由于研究细胞中瞬时 PTM 的挑战和生产蛋白质的方法有限而受到阻碍 含有修饰氨基酸的特定组合。合成生物学和化学生物学的最新进展。 已成功证明了编码多种非标准氨基酸(nsAA)的能力,包括 生理相关的 PTM,尤其是基因组开发的最新进展。 重新编码生物(GRO)——具有开放编码通道的重新编码大肠杆菌菌株——以及工程化翻译 编码 PTM(例如磷酸丝氨酸)的系统已允许激活人类磷蛋白。 能力精确定义了活性蛋白质状态,绘制底物网络图,并暗示了新功能 然而,出现了两个重要的挑战,阻碍了全面的研究。 对这些蛋白质网络的理解并限制了将这些见解转化为有针对性的临床解决方案。 首先,导致活性蛋白质状态的不同 PTM 的精确排列和贡献通常是 其次,在分子水平上靶向 PTM 的小分子的开发。 精确调节蛋白质活性是新药开发的一个决定性挑战。 在本提案中,我们寻求利用基因组、生物分子和蛋白质组技术的坚实基础, 系统和合成生物学方面的专业知识以及构建基因组记录生物体的初步数据 (GRO) 与大肠杆菌中的三个开放密码子(目标 1),设计重新分配意义和终止的翻译机器 用于编码翻译后氨基酸的多个非标准氨基酸的位点特异性掺入的密码子 修饰蛋白质(目标 2),并利用这些技术开发合成生物学平台 综合激活疾病相关蛋白质网络,用于分离新候选药物(目标 3)。 意义:这项工作意义重大,因为它将实现生理学的合成激活 GRO 中分子水平的相关蛋白质网络可以阐明复杂的蛋白质激活系统。 疾病背后的生物分子相互作用和难以概括的人类蛋白质网络 在其天然环境中研究和操作这些激活的蛋白质网络以小分子。 文库建立了一种快速、简便的新方法来探测分子特异性的生物标志物,并设定了 基于新合成生物学的药物发现平台的阶段。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Farren J. Isaacs其他文献

Synthetic biology: Automated design of RNA devices.
合成生物学:RNA 装置的自动化设计。
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    14.8
  • 作者:
    Farren J. Isaacs
  • 通讯作者:
    Farren J. Isaacs
Tough Hydrogel-Based Biocontainment of Engineered Organisms for Continuous, Self-Powered Sensing and Computation
基于坚韧水凝胶的工程生物生物防护,可实现连续自供电传感和计算
  • DOI:
    10.1101/2020.02.11.941120
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tzu;E. Tham;Xinyue Liu;Kevin Yehl;A. J. Rovner;H. Yuk;Farren J. Isaacs;Xuanhe Zhao;T. Lu
  • 通讯作者:
    T. Lu
Cellular function of the GndA small open reading frame-encoded polypeptide during heat shock
GndA小开放阅读框编码多肽在热激过程中的细胞功能
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jessica J Mohsen;Michael G. Mohsen;Kevin Jiang;Ane Landajuela;Laura Quinto;Farren J. Isaacs;E. Karatekin;Sarah A. Slavoff
  • 通讯作者:
    Sarah A. Slavoff
Synthetic biology evolves.
合成生物学不断发展。
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    17.3
  • 作者:
    William J. Blake;Farren J. Isaacs
  • 通讯作者:
    Farren J. Isaacs
Erratum to: The real cost of sequencing: scaling computation to keep pace with data generation
勘误表:测序的实际成本:扩展计算以跟上数据生成的步伐
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    12.3
  • 作者:
    Paul Muir;Shantao Li;S. Lou;Daifeng Wang;Daniel Spakowicz;L. Salichos;Jing Zhang;G. Weinstock;Farren J. Isaacs;J. Rozowsky;M. Gerstein
  • 通讯作者:
    M. Gerstein

Farren J. Isaacs的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Farren J. Isaacs', 18)}}的其他基金

Developing next-generation genomically recoded organisms to synthetically activate biomarkers for drug discovery
开发下一代基因组重新编码的生物体以合成激活药物发现的生物标志物
  • 批准号:
    10263259
  • 财政年份:
    2020
  • 资助金额:
    $ 58.8万
  • 项目类别:
Developing next-generation genomically recoded organisms to synthetically activate biomarkers for drug discovery
开发下一代基因组重新编码的生物体以合成激活药物发现的生物标志物
  • 批准号:
    10618236
  • 财政年份:
    2020
  • 资助金额:
    $ 58.8万
  • 项目类别:
Developing next-generation genomically recoded organisms to synthetically activate biomarkers for drug discovery
开发下一代基因组重新编码的生物体以合成激活药物发现的生物标志物
  • 批准号:
    10430283
  • 财政年份:
    2020
  • 资助金额:
    $ 58.8万
  • 项目类别:
Expanding the genetic code with phosphotyrosine and phosphothreonine
用磷酸酪氨酸和磷酸苏氨酸扩展遗传密码
  • 批准号:
    10062991
  • 财政年份:
    2017
  • 资助金额:
    $ 58.8万
  • 项目类别:
Deciphering human signaling networks through synthetic activation of proteins in genomically recoded organisms with multiple open codons
通过具有多个开放密码子的基因组记录生物体中蛋白质的合成激活来破译人类信号网络
  • 批准号:
    10380150
  • 财政年份:
    2015
  • 资助金额:
    $ 58.8万
  • 项目类别:
Deciphering human signaling networks through synthetic activation of proteins in genomically recoded organisms with multiple open codons
通过具有多个开放密码子的基因组记录生物体中蛋白质的合成激活来破译人类信号网络
  • 批准号:
    10207998
  • 财政年份:
    2015
  • 资助金额:
    $ 58.8万
  • 项目类别:
Deciphering human signaling networks through synthetic activation of proteins in genomically recoded organisms with multiple open codons
通过具有多个开放密码子的基因组记录生物体中蛋白质的合成激活来破译人类信号网络
  • 批准号:
    10592390
  • 财政年份:
    2015
  • 资助金额:
    $ 58.8万
  • 项目类别:
Revealing substrates and phosphoproteome level function of human STE20 kinases
揭示人类 STE20 激酶的底物和磷酸化蛋白质组水平功能
  • 批准号:
    10171453
  • 财政年份:
    2015
  • 资助金额:
    $ 58.8万
  • 项目类别:

相似国自然基金

时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

Scalable platforms for understudied histone modifications and modifiers
用于未充分研究的组蛋白修饰和修饰剂的可扩展平台
  • 批准号:
    10567849
  • 财政年份:
    2023
  • 资助金额:
    $ 58.8万
  • 项目类别:
"Post-translational modification of non-histone proteins as a mechanism of pMHC-I neo-ligand generation"
“非组蛋白蛋白的翻译后修饰作为 pMHC-I 新配体生成的机制”
  • 批准号:
    10435184
  • 财政年份:
    2022
  • 资助金额:
    $ 58.8万
  • 项目类别:
Combinatorial effects of PTMs on a-Synuclein structure, function and aggregation
PTM 对 a-Synuclein 结构、功能和聚集的组合效应
  • 批准号:
    10391709
  • 财政年份:
    2022
  • 资助金额:
    $ 58.8万
  • 项目类别:
A Chemical Footprinting Approach towards Poly-ADP-Ribosylation-regulated Biomolecular Condensation
聚 ADP 核糖基化调节生物分子缩合的化学足迹方法
  • 批准号:
    10524783
  • 财政年份:
    2022
  • 资助金额:
    $ 58.8万
  • 项目类别:
A molecular informed therapy for Diffuse Intrinsic Pontine Gliomas (DIPG)
弥漫性内源性脑桥胶质瘤 (DIPG) 的分子信息疗法
  • 批准号:
    10654155
  • 财政年份:
    2022
  • 资助金额:
    $ 58.8万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了