Deciphering human signaling networks through synthetic activation of proteins in genomically recoded organisms with multiple open codons
通过具有多个开放密码子的基因组记录生物体中蛋白质的合成激活来破译人类信号网络
基本信息
- 批准号:10207998
- 负责人:
- 金额:$ 35.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-25 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AcetylationAmino AcidsBehaviorBinding ProteinsBiochemicalBiological AssayCell physiologyCellsChemicalsCodeCodon NucleotidesComplexDataDevelopmentDiseaseEnzymesEscherichia coliEssential GenesEvolutionExhibitsFoundationsGeneticGenetic CodeGenome engineeringGenomicsGoalsHumanInternetMediatingMethodsModalityMolecularNamesOrganismPatternPhosphoproteinsPhosphorylationPhosphoserinePhysiologicalPositioning AttributePost-Translational Protein ProcessingProtein Binding DomainProtein BiosynthesisProtein EngineeringProteinsProteomeProteomicsRecombinant ProteinsRecombinantsRegulationResearchRibosomesScaffolding ProteinSeriesSerineSet proteinSignal TransductionSiteSpecificityStructureSystemTechniquesTechnologyTerminator CodonTestingTranslationsWorkbasefitnessgenome editinghuman diseasemutantnew technologynew therapeutic targetnovelnovel strategiesnovel therapeuticsprogramsprotein activationprotein complexprotein protein interactionreconstitutionrelease factorsynthetic constructtoolyeast two hybrid system
项目摘要
Project Summary
Healthy and diseased physiological states are governed by a complex web of interacting proteins that confer the
collective behavior observed in cells. These protein networks are decorated with posttranslational modifications
(PTMs) that determine their structure, function, and impart specificity for cellular signaling. Phosphorylation and
acetylation represent two common PTMs that dictate healthy and disease states in human cells. For instance,
14-3-3 proteins scaffold thousands of important phosphoproteins with evidence suggesting that acetylation can
modify its function. Current progress toward the elucidation of PTM-mediated signaling networks is hampered
by the challenge of studying transient PTMs in cells and limited methods to produce proteins containing specific
combinations of modified amino acids. Our previous efforts utilized a recoded E. coli strain (i.e., genomically
recoded organism) to synthesize all human phosphoserine proteins using a genetic code expansion technique.
We expanded this work through the development of a two hybrid like technology, named HI-P. HI-P validated
previously observed phosphorylation dependent protein-protein interactions and identified scores of novel
phosphoserine-mediated interactions across the human proteome that have been validated in biochemical- and
cell-based assays. Our approach allows for synthetic DNA inputs to direct ribosome-based phosphoprotein
synthesis and thus creates a programmable genetic tool to study the human phosphoproteome at the molecular
level. Since deciphering complex protein networks require studying the impact of multiple PTMs in isolation and
in combination, the key contribution of the proposed research is expected to expand the ability to genetically
encode phosphoserine and acetylation at precise positions in 14-3-3 proteins to reveal PTM-mediated protein-
protein interactions. Specific Aims: In this proposal, we seek to leverage a strong foundation of technologies,
expertise, and preliminary data to construct a recoded E. coli with a single stop codon (two open codons) (Aim
1), develop a protein synthesis system capable of simultaneous encoding of phosphorylated and acetylated
amino acids into proteins (Aim 2), and employ these capabilities to deconvolute PTM-mediated 14-3-3 protein
network interactions (Aim 3). Significance: This work will be significant because it will enable the expression of
programmable human proteins containing two PTMs thereby establishing a new approach to decipher complex
human signaling networks at the molecular level. We anticipate this work will elucidate novel 14-3-3 protein
network interactions governed by PTMs and enable new research into biomolecular and protein mechanisms
that can be used to develop new therapies for human disease.
项目摘要
健康且患病的生理状态受复杂的相互作用蛋白质的网络,赋予
在细胞中观察到的集体行为。这些蛋白质网络用翻译后修饰装饰
(PTM)确定其结构,功能和赋予细胞信号的特异性。磷酸化和
乙酰化代表了两个常见的PTM,这些PTM决定人类细胞中健康和疾病状态。例如,
14-3-3蛋白支架数千种重要的磷蛋白,有证据表明乙酰化可以
修改其功能。阐明PTM介导的信号网络的当前进展受到阻碍
通过研究细胞中瞬时PTM的挑战和有限的方法生产含有特定的蛋白质
改性氨基酸的组合。我们以前的努力利用了重新编码的大肠杆菌菌株(即在基因组上
重新编码的有机体)使用遗传密码扩展技术合成所有人类磷酸蛋白蛋白。
我们通过开发两种混合动力技术(名为HI-P)扩展了这项工作。 HI-P验证
先前观察到的磷酸化依赖性蛋白 - 蛋白质相互作用并确定了新的分数
在生化和
基于细胞的测定。我们的方法允许合成DNA输入以直接基于核糖体的磷蛋白
合成,因此创建了一种可编程的遗传工具来研究分子的人磷蛋白酶
等级。由于解密复杂蛋白网络需要研究多个PTM在孤立和
结合起来,预计拟议研究的关键贡献将扩大遗传学的能力
在14-3-3蛋白中的精确位置编码磷酸盐和乙酰化,以揭示PTM介导的蛋白质 -
蛋白质相互作用。具体目的:在此提案中,我们试图利用强大的技术基础,
专业知识和初步数据,可以用一个终止密码子(两个开放密码子)构建一个重新编码的大肠杆菌(AIM
1),开发一个能够同时编码磷酸化和乙酰化的蛋白质合成系统
氨基酸成蛋白质(AIM 2),并采用这些能力来否定PTM介导的14-3-3蛋白
网络交互(AIM 3)。意义:这项工作将是重要的,因为它将能够表达
可编程的人蛋白包含两个PTM,从而建立了一种新的方法来破译复合物
分子水平的人类信号网络。我们预计这项工作将阐明新颖的14-3-3蛋白
由PTM管辖的网络相互作用,并为生物分子和蛋白质机制提供了新的研究
可以用来开发针对人类疾病的新疗法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Farren J. Isaacs其他文献
Synthetic biology: Automated design of RNA devices.
合成生物学:RNA 装置的自动化设计。
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:14.8
- 作者:
Farren J. Isaacs - 通讯作者:
Farren J. Isaacs
Tough Hydrogel-Based Biocontainment of Engineered Organisms for Continuous, Self-Powered Sensing and Computation
基于坚韧水凝胶的工程生物生物防护,可实现连续自供电传感和计算
- DOI:
10.1101/2020.02.11.941120 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Tzu;E. Tham;Xinyue Liu;Kevin Yehl;A. J. Rovner;H. Yuk;Farren J. Isaacs;Xuanhe Zhao;T. Lu - 通讯作者:
T. Lu
Cellular function of the GndA small open reading frame-encoded polypeptide during heat shock
GndA小开放阅读框编码多肽在热激过程中的细胞功能
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Jessica J Mohsen;Michael G. Mohsen;Kevin Jiang;Ane Landajuela;Laura Quinto;Farren J. Isaacs;E. Karatekin;Sarah A. Slavoff - 通讯作者:
Sarah A. Slavoff
Synthetic biology evolves.
合成生物学不断发展。
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:17.3
- 作者:
William J. Blake;Farren J. Isaacs - 通讯作者:
Farren J. Isaacs
Erratum to: The real cost of sequencing: scaling computation to keep pace with data generation
勘误表:测序的实际成本:扩展计算以跟上数据生成的步伐
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:12.3
- 作者:
Paul Muir;Shantao Li;S. Lou;Daifeng Wang;Daniel Spakowicz;L. Salichos;Jing Zhang;G. Weinstock;Farren J. Isaacs;J. Rozowsky;M. Gerstein - 通讯作者:
M. Gerstein
Farren J. Isaacs的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Farren J. Isaacs', 18)}}的其他基金
Developing next-generation genomically recoded organisms to synthetically activate biomarkers for drug discovery
开发下一代基因组重新编码的生物体以合成激活药物发现的生物标志物
- 批准号:
10263259 - 财政年份:2020
- 资助金额:
$ 35.82万 - 项目类别:
Developing next-generation genomically recoded organisms to synthetically activate biomarkers for drug discovery
开发下一代基因组重新编码的生物体以合成激活药物发现的生物标志物
- 批准号:
10097168 - 财政年份:2020
- 资助金额:
$ 35.82万 - 项目类别:
Developing next-generation genomically recoded organisms to synthetically activate biomarkers for drug discovery
开发下一代基因组重新编码的生物体以合成激活药物发现的生物标志物
- 批准号:
10618236 - 财政年份:2020
- 资助金额:
$ 35.82万 - 项目类别:
Developing next-generation genomically recoded organisms to synthetically activate biomarkers for drug discovery
开发下一代基因组重新编码的生物体以合成激活药物发现的生物标志物
- 批准号:
10430283 - 财政年份:2020
- 资助金额:
$ 35.82万 - 项目类别:
Expanding the genetic code with phosphotyrosine and phosphothreonine
用磷酸酪氨酸和磷酸苏氨酸扩展遗传密码
- 批准号:
10062991 - 财政年份:2017
- 资助金额:
$ 35.82万 - 项目类别:
Deciphering human signaling networks through synthetic activation of proteins in genomically recoded organisms with multiple open codons
通过具有多个开放密码子的基因组记录生物体中蛋白质的合成激活来破译人类信号网络
- 批准号:
10380150 - 财政年份:2015
- 资助金额:
$ 35.82万 - 项目类别:
Deciphering human signaling networks through synthetic activation of proteins in genomically recoded organisms with multiple open codons
通过具有多个开放密码子的基因组记录生物体中蛋白质的合成激活来破译人类信号网络
- 批准号:
10592390 - 财政年份:2015
- 资助金额:
$ 35.82万 - 项目类别:
Revealing substrates and phosphoproteome level function of human STE20 kinases
揭示人类 STE20 激酶的底物和磷酸化蛋白质组水平功能
- 批准号:
10171453 - 财政年份:2015
- 资助金额:
$ 35.82万 - 项目类别:
相似国自然基金
孕期母体支链氨基酸代谢紊乱和子代支链氨基酸代谢酶基因遗传变异联合作用对儿童神经行为发育影响的队列研究
- 批准号:82373581
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
Gr43a+/Ir76b+神经元介导的氨基酸感知在果蝇进食行为中的机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于分子对接技术氨基酸稳定鲢肌球蛋白热诱导相行为机理研究
- 批准号:
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
新型氨基酸功能化离子液体非水生物催化制备生物柴油的行为研究
- 批准号:
- 批准年份:2019
- 资助金额:38 万元
- 项目类别:地区科学基金项目
胰腺癌支链氨基酸分解代谢失调相关分子机制及其与生物学行为相关性的研究
- 批准号:81902457
- 批准年份:2019
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Scalable platforms for understudied histone modifications and modifiers
用于未充分研究的组蛋白修饰和修饰剂的可扩展平台
- 批准号:
10567849 - 财政年份:2023
- 资助金额:
$ 35.82万 - 项目类别:
The Role of Microbiome Composition in Amphetamine Abuse
微生物组组成在安非他明滥用中的作用
- 批准号:
10656799 - 财政年份:2023
- 资助金额:
$ 35.82万 - 项目类别:
"Post-translational modification of non-histone proteins as a mechanism of pMHC-I neo-ligand generation"
“非组蛋白蛋白的翻译后修饰作为 pMHC-I 新配体生成的机制”
- 批准号:
10435184 - 财政年份:2022
- 资助金额:
$ 35.82万 - 项目类别:
Combinatorial effects of PTMs on a-Synuclein structure, function and aggregation
PTM 对 a-Synuclein 结构、功能和聚集的组合效应
- 批准号:
10391709 - 财政年份:2022
- 资助金额:
$ 35.82万 - 项目类别:
"Post-translational modification of non-histone proteins as a mechanism of pMHC-I neo-ligand generation"
“非组蛋白蛋白的翻译后修饰作为 pMHC-I 新配体生成的机制”
- 批准号:
10583511 - 财政年份:2022
- 资助金额:
$ 35.82万 - 项目类别: