Revealing substrates and phosphoproteome level function of human STE20 kinases

揭示人类 STE20 激酶的底物和磷酸化蛋白质组水平功能

基本信息

  • 批准号:
    10171453
  • 负责人:
  • 金额:
    $ 11.77万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-25 至 2021-03-31
  • 项目状态:
    已结题

项目摘要

Project summary Protein phosphorylation is one of the most common and critical post-translational modifications governing signaling cascades in humans. Phosphorylation of protein kinases governs their activity and regulation. The importance of regulation by phosphorylation is further emphasized by the fact that protein kinases comprise nearly 2% of the human proteome and numerous kinases have been implicated in processes that control cell proliferation, motility, and apoptosis in healthy and diseased human cells. While identification of phosphorylation sites within the human proteome has dramatically progressed in recent years, our understanding of phosphorylation cascades is limited due to a distinct lack of knowledge of which kinases are responsible for each phosphorylation event and the specific arrangement of phosphorylation sites leading to an active kinase that phosphorylates its target substrate. Establishing direct connections of all human kinases to the phosphoproteome and revealing a systems-level diagram of human signaling networks also remain defining challenges. Since phosphorylation plays a central role in protein-protein interactions through phospho- binding domains, new approaches that can address these questions in a comprehensive and unbiased fashion are needed. Studying protein phosphorylation has been limited by the inability to generate phosphoproteins with the specificity of natural systems. Genetically encoded non-standard amino acids (NSAAs) have recently enabled site-specific incorporation of phosphoserine into proteins. We showed that a genomically recoded organism (GRO), in which all TAG stop codons were converted to TAA and the deletion of RF-1, converted TAG to an open sense codon dedicated for incorporating phosphoamino acids. Importantly, this technological breakthrough enables site-specific expression of human phosphoproteins in an engineered bacterial system (i.e., GRO containing phosphoserine orthogonal translation system, OTS). Furthermore, it provides a platform technology to address questions probing the connectivity of the human kinome and the functional landscape of phospho-binding domains. Here, we aim to further develop and apply this technology to generate optimized platforms to address functional questions surrounding the phosphoserine component of the human phosphoproteome (Aim 1). These new, enhanced platforms will enable studies to identify STE20 kinase substrates that will directly inform future research into multiple human disease pathways as well as define a general strategy to elucidate human kinase substrates (Aim 2). Finally, we aim to identify phosphorylation sites that are drivers of protein-protein interactions in general, followed by, a systematic screen of the STE20 substrates in a coordinated effort to assign biological function to a portion of the human phosphoproteome (Aim 3).
项目摘要 蛋白质磷酸化是控制后最常见和最关键的翻译后修饰之一 在人类中发出信号级联。蛋白激酶的磷酸化控制其活性和调节。这 蛋白激酶包含以下事实,进一步强调了通过磷酸化调节的重要性 近2%的人蛋白质组和许多激酶与控制细胞的过程有关 健康和患病的人类细胞中的增殖,运动和凋亡。同时识别 近年来,人类蛋白质组内的磷酸化位点已取得了巨大进展,我们 了解磷酸化级联反应是有限的 负责每个磷酸化事件以及磷酸化位点的特定排列,导致 活性激酶可磷酸化其靶标底物。建立所有人类激酶与 磷蛋白体和揭示人类信号网络的系统级图也仍然保留 定义挑战。由于磷酸化在通过磷酸化的蛋白质 - 蛋白质相互作用中起着核心作用 具有约束力的领域,可以全面且公正的方式可以解决这些问题的新方法 需要。研究蛋白质磷酸化受到无法产生磷酸蛋白的限制 具有自然系统的特异性。遗传编码的非标准氨基酸(NSAA)最近具有 可以将磷酸磷酶特异性掺入蛋白质中。我们证明了一个基因组进行了重新编码 有机体(GRO),其中所有标签终止密码子都转换为TAA和RF-1的删除,转换为 标记用于用于掺入磷酸氨基酸的开放式密码子。重要的是,这种技术 突破使人类磷蛋白在工程细菌系统中的位点特异性表达 (即,含有磷serine的正交翻译系统的GRO)。此外,它提供了一个平台 解决探索人类群的连通性和功能格局的问题的技术 磷酸结合域。在这里,我们旨在进一步开发和应用这项技术以生成优化 解决人类磷serine成分的功能问题的平台 磷蛋白酶(AIM 1)。这些新的,增强的平台将使研究能够识别Ste20激酶 将直接告知未来对多种人类疾病途径的研究并定义A的底物 阐明人激酶底物的一般策略(AIM 2)。最后,我们旨在确定磷酸化 通常是蛋白质 - 蛋白质相互作用的驱动因素,然后是STE20的系统屏幕 在协调的努力中,将生物学功能分配给人类磷蛋白组的一部分的底物 (目标3)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(2)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Farren J. Isaacs其他文献

Synthetic biology: Automated design of RNA devices.
合成生物学:RNA 装置的自动化设计。
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    14.8
  • 作者:
    Farren J. Isaacs
  • 通讯作者:
    Farren J. Isaacs
Tough Hydrogel-Based Biocontainment of Engineered Organisms for Continuous, Self-Powered Sensing and Computation
基于坚韧水凝胶的工程生物生物防护,可实现连续自供电传感和计算
  • DOI:
    10.1101/2020.02.11.941120
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tzu;E. Tham;Xinyue Liu;Kevin Yehl;A. J. Rovner;H. Yuk;Farren J. Isaacs;Xuanhe Zhao;T. Lu
  • 通讯作者:
    T. Lu
Cellular function of the GndA small open reading frame-encoded polypeptide during heat shock
GndA小开放阅读框编码多肽在热激过程中的细胞功能
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jessica J Mohsen;Michael G. Mohsen;Kevin Jiang;Ane Landajuela;Laura Quinto;Farren J. Isaacs;E. Karatekin;Sarah A. Slavoff
  • 通讯作者:
    Sarah A. Slavoff
Synthetic biology evolves.
合成生物学不断发展。
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    17.3
  • 作者:
    William J. Blake;Farren J. Isaacs
  • 通讯作者:
    Farren J. Isaacs
Erratum to: The real cost of sequencing: scaling computation to keep pace with data generation
勘误表:测序的实际成本:扩展计算以跟上数据生成的步伐
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    12.3
  • 作者:
    Paul Muir;Shantao Li;S. Lou;Daifeng Wang;Daniel Spakowicz;L. Salichos;Jing Zhang;G. Weinstock;Farren J. Isaacs;J. Rozowsky;M. Gerstein
  • 通讯作者:
    M. Gerstein

Farren J. Isaacs的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Farren J. Isaacs', 18)}}的其他基金

Developing next-generation genomically recoded organisms to synthetically activate biomarkers for drug discovery
开发下一代基因组重新编码的生物体以合成激活药物发现的生物标志物
  • 批准号:
    10263259
  • 财政年份:
    2020
  • 资助金额:
    $ 11.77万
  • 项目类别:
Developing next-generation genomically recoded organisms to synthetically activate biomarkers for drug discovery
开发下一代基因组重新编码的生物体以合成激活药物发现的生物标志物
  • 批准号:
    10097168
  • 财政年份:
    2020
  • 资助金额:
    $ 11.77万
  • 项目类别:
Developing next-generation genomically recoded organisms to synthetically activate biomarkers for drug discovery
开发下一代基因组重新编码的生物体以合成激活药物发现的生物标志物
  • 批准号:
    10618236
  • 财政年份:
    2020
  • 资助金额:
    $ 11.77万
  • 项目类别:
Developing next-generation genomically recoded organisms to synthetically activate biomarkers for drug discovery
开发下一代基因组重新编码的生物体以合成激活药物发现的生物标志物
  • 批准号:
    10430283
  • 财政年份:
    2020
  • 资助金额:
    $ 11.77万
  • 项目类别:
Expanding the genetic code with phosphotyrosine and phosphothreonine
用磷酸酪氨酸和磷酸苏氨酸扩展遗传密码
  • 批准号:
    10062991
  • 财政年份:
    2017
  • 资助金额:
    $ 11.77万
  • 项目类别:
Deciphering human signaling networks through synthetic activation of proteins in genomically recoded organisms with multiple open codons
通过具有多个开放密码子的基因组记录生物体中蛋白质的合成激活来破译人类信号网络
  • 批准号:
    10380150
  • 财政年份:
    2015
  • 资助金额:
    $ 11.77万
  • 项目类别:
Deciphering human signaling networks through synthetic activation of proteins in genomically recoded organisms with multiple open codons
通过具有多个开放密码子的基因组记录生物体中蛋白质的合成激活来破译人类信号网络
  • 批准号:
    10207998
  • 财政年份:
    2015
  • 资助金额:
    $ 11.77万
  • 项目类别:
Deciphering human signaling networks through synthetic activation of proteins in genomically recoded organisms with multiple open codons
通过具有多个开放密码子的基因组记录生物体中蛋白质的合成激活来破译人类信号网络
  • 批准号:
    10592390
  • 财政年份:
    2015
  • 资助金额:
    $ 11.77万
  • 项目类别:

相似国自然基金

中性氨基酸转运体SNAT2在血管稳态和重构中的作用及机制
  • 批准号:
    82370423
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
催化不对称自由基反应合成手性α-氨基酸衍生物
  • 批准号:
    22371216
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
BRD9通过表观重塑促进支链氨基酸代谢介导TP53突变型胰腺癌化疗耐药的机制研究
  • 批准号:
    82360519
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
氨基酸转运体SLC7A5诱导食管癌免疫治疗获得性耐药的机制研究
  • 批准号:
    82373410
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
(光)电催化硝酸根和有机酸C-N偶联合成氨基酸
  • 批准号:
    22372162
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Mitochondrial electron transport dysfunction: Dissecting pathomechanisms
线粒体电子传递功能障碍:剖析病理机制
  • 批准号:
    10679988
  • 财政年份:
    2023
  • 资助金额:
    $ 11.77万
  • 项目类别:
Preclinical Development of a Novel Therapeutic Agent for Idiopathic Pulmonary Fibrosis
特发性肺纤维化新型治疗剂的临床前开发
  • 批准号:
    10696538
  • 财政年份:
    2023
  • 资助金额:
    $ 11.77万
  • 项目类别:
The Role of Glycosyl Ceramides in Heart Failure and Recovery
糖基神经酰胺在心力衰竭和恢复中的作用
  • 批准号:
    10644874
  • 财政年份:
    2023
  • 资助金额:
    $ 11.77万
  • 项目类别:
Structure-based computational engineering of saCas9 PAM requirement
saCas9 PAM 要求的基于结构的计算工程
  • 批准号:
    10696610
  • 财政年份:
    2023
  • 资助金额:
    $ 11.77万
  • 项目类别:
Targeting the Amino Acid Transporter SLC7A5 for Pulmonary Fibrosis
靶向氨基酸转运蛋白 SLC7A5 治疗肺纤维化
  • 批准号:
    10630480
  • 财政年份:
    2023
  • 资助金额:
    $ 11.77万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了