Treatment of pediatric physeal injuries using a 3D printed biomimetic of growth plate cartilage
使用 3D 打印仿生生长板软骨治疗儿童骺损伤
基本信息
- 批准号:10112931
- 负责人:
- 金额:$ 36.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-03-01 至 2024-02-29
- 项目状态:已结题
- 来源:
- 关键词:3-Dimensional3D PrintAffectAgeAppearanceAreaBiocompatible MaterialsBiomimeticsBone GrowthBone LengtheningCCL25 geneCartilageChemicalsChildChildhoodChondrocytesChondrogenesisClinicClinical ManagementComplexCuesDeformityDevelopmentEncapsulatedEngineeringEpiphysial cartilageExcisionExtracellular MatrixFatty acid glycerol estersFractureGoalsGrowthHistologyHydrogelsImpairmentImplantInjuryLeadLeftLocationMeasuresMechanicsMesenchymal Stem CellsMineralsModelingMorphologyNatural regenerationOperative Surgical ProceduresOryctolagus cuniculusOsteogenesisPhasePrintingPropertyQuality of lifeRecurrenceSignal TransductionSiteStromal Cell-Derived Factor 1StructureTechnologyTestingThickTimeTissuesTranslatingWorkbonecartilage repaircartilaginouschemokinedesigndigitalimplantationimprovedinjuredlong bonemechanical propertiesmicroCTmimeticsnovelpediatric patientspreventrecruitscaffoldskeletalstem cell differentiationstem cell migrationstem cellssubchondral bonetissue repair
项目摘要
Physeal injuries account for 30% of all pediatric fractures and can result in impaired bone growth. The physis
(or, “growth plate”) is a cartilage region at the end of children's long bones that is responsible for longitudinal
bone growth. Once damaged, mesenchymal stem cells from the underlying subchondral bone migrate into the
injured physis, undergo osteogenesis, and form unwanted bony tissue, referred to as a “bony bar”. This can
lead to angular deformities or completely halt longitudinal bone growth, which is devastating for children that
are still growing. Current surgical treatments involve the removal of the bony bar. The site is often filled either
with a soft fat graft or a hard, non-degradable plastic, both of which offer imperfect solutions leading to collapse
of the resection site or the dislodgement of the biomaterial, respectively. Thus, the overall goal of this project is
to develop an improved treatment option that utilizes 3D printing technology to engineer a biomimetic of growth
plate cartilage containing mechanically-graded 3D stiff structures in-filled with a soft cartilage biomimetic
hydrogel. Our hypothesis is that a 3D printed biomimetic of growth plate cartilage prevents collapse at
the resection site through its structure and simultaneously recruits MSCs to direct them through
zonally appropriate physiochemical cues to a chondrogenic, not osteogenic, lineage and prevents
bony bar formation by replacing it with a cartilaginous repair tissue. Thus, long-term the 3D printed
biomimetic will allow normal bone elongation after physeal injury. To test this hypothesis, we have developed
two aims for the R21 phase and two aims for the R33 phase. In the R21 phase, we will (1) print a 3D construct
that mimics the morphology and mechanical properties of growth plate cartilage (Aim 1) and (2) evaluate the
ability of a 3D printed biomimetic of growth plate cartilage to prevent bony bar formation in a rabbit model of
physeal injury (Aim 2). At the conclusion of the 2-year exploratory phase, we expect to have established a
novel biomimetic of growth plate cartilage designed through 3D printing technology and confirmed that a 3D
printed stiff structure mimicking that of the growth plate and infilled with a soft hydrogel prevents bony bar
reformation. In the R33 phase, we will (1) assess cartilage formation in the implanted 3D printed biomimetic
construct in a rabbit model of physeal injury through the recruitment of endogenous stem cells (Aim 3), and (2)
evaluate the ability of a 3D printed biomimetic of growth plate cartilage to enable longitudinal bone growth in a
rabbit model of physeal injury, which is followed for 1 year after implantation. At the conclusion of the 3-year
R33 phase, we expect to have demonstrated that filling the site after bony bar resection with a 3D printed
biomimetic of growth plate cartilage prevents bony bar reformation and supports cartilage formation that is
eventually converted into new bone following growth to skeletal maturity. By providing a solution to restore
normal bone growth, this 3D printed biomimetic of growth plate cartilage has the potential to be translated into
the clinic to improve the quality of life of affected children.
物理损伤占所有小儿骨折的30%,可能导致骨骼生长受损。物理
(或“生长板”)是儿童长骨头末端的软骨区域,负责纵向
骨生长。一旦损坏,来自下层下骨的间充质干细胞迁移到
受伤的物理,发生成骨,形成不需要的骨组织,称为“骨棒”。这可以
导致角畸形或完全停止纵向骨生长,这对儿童来说是毁灭性的
仍在增长。当前的手术治疗涉及去除骨棒。该网站通常会填充
带有柔软的脂肪移植物或坚硬的,不可降解的塑料,两者都提供了不完美的解决方案,导致崩溃
切除部位或生物材料的披露。那,这个项目的总体目标是
为了开发一种改进的治疗选择,该选项利用3D打印技术来设计生物学
板块软骨含有机械分级的3D僵硬结构,并用软软骨仿生
水凝胶。我们的假设是,生长板软骨的3D印刷仿生型可防止
切除站点通过其结构,简单地招募MSC来指导它们
具有软骨的占地适当的生理学提示,而不是成骨的谱系,并且可以防止
通过用软骨修复组织代替骨杆形成。长期印刷了3D
仿生型将允许物理损伤后正常的骨伸长。为了检验这一假设,我们已经开发了
R21阶段的两个目的,R33阶段的两个目标。在R21阶段,我们将(1)打印3D构造
模仿生长板软骨的形态和机械特性(AIM 1)和(2)评估
生长板软骨的3D印刷仿生型的能力,以防止兔模型中的骨棒形成
物理损伤(AIM 2)。在2年探索阶段的结论结束时,我们希望建立一个
通过3D打印技术设计的生长板软骨的新型仿生型,并确认了3D
印刷的刚性结构模仿生长板的结构并用软水凝胶填充,可防止骨棒
改革。在R33阶段,我们将(1)植入的3D印刷仿生剂中的评估软骨形成
通过募集内源性干细胞(AIM 3)和(2)在兔子损伤的兔子模型中构建
评估生长板软骨的3D印刷仿生型能够在A中纵向骨生长
物理损伤的兔模型,植入后1年随后进行。在三年的结论结束时
R33阶段,我们希望证明在骨棒切除后用3D打印填充现场
生长板软骨的仿生性可防止骨棒审查并支持软骨形成
最终在生长到骨骼成熟后转化为新骨骼。通过提供修复解决方案
正常的骨骼生长,这种3D印刷的生长板软骨的仿生型有可能翻译成
诊所改善受影响儿童的生活质量。
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Material properties and strain distribution patterns of bovine growth plate cartilage vary with anatomic location and depth.
- DOI:10.1016/j.jbiomech.2022.111013
- 发表时间:2022-03
- 期刊:
- 影响因子:2.4
- 作者:Fischenich, Kristine M.;Schneider, Stephanie E.;Neu, Corey P.;Payne, Karin A.;Ferguson, Virginia L.
- 通讯作者:Ferguson, Virginia L.
A 3D printed mimetic composite for the treatment of growth plate injuries in a rabbit model.
- DOI:10.1038/s41536-022-00256-1
- 发表时间:2022-10-19
- 期刊:
- 影响因子:7.2
- 作者:Yu, Yangyi;Fischenich, Kristine M.;Schoonraad, Sarah A.;Weatherford, Shane;Uzcategui, Asais Camila;Eckstein, Kevin;Muralidharan, Archish;Crespo-Cuevas, Victor;Rodriguez-Fontan, Francisco;Killgore, Jason P.;Li, Guangheng;McLeod, Robert R.;Miller, Nancy Hadley;Ferguson, Virginia L.;Bryant, Stephanie J.;Payne, Karin A.
- 通讯作者:Payne, Karin A.
The heterogeneous mechanical properties of adolescent growth plate cartilage: A study in rabbit.
- DOI:10.1016/j.jmbbm.2022.105102
- 发表时间:2022-04
- 期刊:
- 影响因子:3.9
- 作者:Eckstein, Kevin N.;Thomas, Stacey M.;Scott, Adrienne K.;Neu, Corey P.;Hadley-Miller, Nancy A.;Payne, Karin A.;Ferguson, Virginia L.
- 通讯作者:Ferguson, Virginia L.
Microscale Photopatterning of Through-thickness Modulus in a Monolithic and Functionally Graded 3D Printed Part.
- DOI:10.1002/smsc.202000017
- 发表时间:2021-02
- 期刊:
- 影响因子:0
- 作者:A. C. Uzcategui;Callie I. Higgins;John E. Hergert;Andrew E. Tomaschke;Victor Crespo-Cuevas;V. Ferguson;S. Bryant;R. McLeod;J. Killgore
- 通讯作者:A. C. Uzcategui;Callie I. Higgins;John E. Hergert;Andrew E. Tomaschke;Victor Crespo-Cuevas;V. Ferguson;S. Bryant;R. McLeod;J. Killgore
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephanie J Bryant其他文献
Stephanie J Bryant的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephanie J Bryant', 18)}}的其他基金
Mapping protein dynamics and their origin at biomaterial surfaces in vivo
绘制体内生物材料表面的蛋白质动力学及其起源
- 批准号:
10378055 - 财政年份:2021
- 资助金额:
$ 36.51万 - 项目类别:
Mapping protein dynamics and their origin at biomaterial surfaces in vivo
绘制体内生物材料表面的蛋白质动力学及其起源
- 批准号:
10206869 - 财政年份:2021
- 资助金额:
$ 36.51万 - 项目类别:
The Role of C-Flip in Mediating Pro-Survival Macrophages in the Foreign Body Response
C-Flip 在介导异物反应中促生存巨噬细胞中的作用
- 批准号:
10063721 - 财政年份:2020
- 资助金额:
$ 36.51万 - 项目类别:
The Role of C-Flip in Mediating Pro-Survival Macrophages in the Foreign Body Response
C-Flip 在介导异物反应中促生存巨噬细胞中的作用
- 批准号:
10210394 - 财政年份:2020
- 资助金额:
$ 36.51万 - 项目类别:
The Origin and Function of Macrophages in the Foreign Body Response
巨噬细胞在异物反应中的起源和功能
- 批准号:
9611776 - 财政年份:2018
- 资助金额:
$ 36.51万 - 项目类别:
Treatment of pediatric physeal injuries using a 3D printed biomimetic of growth plate cartilage
使用 3D 打印仿生生长板软骨治疗儿童骺损伤
- 批准号:
9926114 - 财政年份:2017
- 资助金额:
$ 36.51万 - 项目类别:
Treatment of pediatric physeal injuries using a 3D printed biomimetic of growth plate cartilage
使用 3D 打印仿生生长板软骨治疗儿童骺损伤
- 批准号:
9246272 - 财政年份:2017
- 资助金额:
$ 36.51万 - 项目类别:
Bioinspired Mechanically Stiff Hydrogels for Osteochondral Tissue Regeneration
用于骨软骨组织再生的仿生机械刚性水凝胶
- 批准号:
10612072 - 财政年份:2016
- 资助金额:
$ 36.51万 - 项目类别:
Bioinspired Mechanically Stiff Hydrogels for Osteochondral Tissue Regeneration
用于骨软骨组织再生的仿生机械刚性水凝胶
- 批准号:
10446482 - 财政年份:2016
- 资助金额:
$ 36.51万 - 项目类别:
Mechanically Stiff Hydrogels for Osteochondral Tissue Engineering
用于骨软骨组织工程的机械刚性水凝胶
- 批准号:
9321175 - 财政年份:2016
- 资助金额:
$ 36.51万 - 项目类别:
相似国自然基金
基于3D生物打印仿生NAFLD模型探究细胞外基质硬度对脂质沉积的影响及机制
- 批准号:82300754
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
丝内/丝间空洞对3D打印连续纤维复合材料损伤机理影响机制与分析方法
- 批准号:52375150
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
3D打印Fe-Ga合金的磁各向异性和沉淀相析出调控对磁弹性能的影响
- 批准号:
- 批准年份:2022
- 资助金额:32 万元
- 项目类别:地区科学基金项目
砂型3D打印头全耦合动力学与微滴喷射机理及成形质量影响机制研究
- 批准号:12232013
- 批准年份:2022
- 资助金额:300 万元
- 项目类别:重点项目
本征缺陷对3D打印连续碳纤维增强复合材料失效行为的影响机制
- 批准号:52265017
- 批准年份:2022
- 资助金额:33.00 万元
- 项目类别:地区科学基金项目
相似海外基金
Multi-tissue type condensations for trachea tissue regeneration via individual cell bioprinting
通过单细胞生物打印进行气管组织再生的多组织类型浓缩
- 批准号:
10643041 - 财政年份:2023
- 资助金额:
$ 36.51万 - 项目类别:
Individual cell bioprinting to generate multi-tissue type condensations for osteochondral tissue regeneration
单个细胞生物打印可生成用于骨软骨组织再生的多组织类型浓缩物
- 批准号:
10659772 - 财政年份:2023
- 资助金额:
$ 36.51万 - 项目类别:
Novel Bioprinted Neural Stem Cell-Embedded Hydrogel Matrices for Enhanced Treatment of Glioblastoma
新型生物打印神经干细胞嵌入水凝胶基质,用于增强胶质母细胞瘤的治疗
- 批准号:
10749330 - 财政年份:2023
- 资助金额:
$ 36.51万 - 项目类别:
3D Printed Microfluidic Artificial Lung for Veteran Rehabilitation
用于退伍军人康复的 3D 打印微流控人工肺
- 批准号:
10629531 - 财政年份:2023
- 资助金额:
$ 36.51万 - 项目类别:
Development of a 3D neurovascular unit for in vitro modeling of subarachnoid hemorrhage and screening therapies
开发用于蛛网膜下腔出血体外建模和筛选治疗的 3D 神经血管单元
- 批准号:
10722387 - 财政年份:2023
- 资助金额:
$ 36.51万 - 项目类别: