Mapping protein dynamics and their origin at biomaterial surfaces in vivo
绘制体内生物材料表面的蛋白质动力学及其起源
基本信息
- 批准号:10206869
- 负责人:
- 金额:$ 16.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdsorptionAlbuminsAmino AcidsBiocompatible MaterialsCellsChemistryClinicalConfocal MicroscopyCre driverDataDevelopmentDevicesEquipment MalfunctionEventFDA approvedForeign BodiesGenerationsGoalsHydrophobicityImplantIn VitroInflammationInflammatoryInflammatory ResponseInnate Immune SystemLabelLeadLinkLongevityMacrophage ActivationMass Spectrum AnalysisMembrane ProteinsMethionineMethionine-tRNA LigaseMethodsModelingMolecularMusMusculoskeletalMusculoskeletal SystemMyeloid CellsNatural regenerationNatureNecrosisPatientsPatternPlasmaPoint MutationProcessProductionProtein DynamicsProteinsRoleSerumSerum ProteinsSignal TransductionSiliconesSourceSurfaceTechniquesTestingTherapeutic InterventionTimeTissuesWild Type Mouseadverse outcomeanalogbasecapsulecommunication devicedesignhydrophilicityimplantable deviceimplantationin vitro Assayin vivoinsightmacrophageneutrophilnext generationpreventrecruitrepairedresponsetherapeutically effective
项目摘要
Therapies to repair or regenerate damage to the musculoskeletal system often involve the implantation of
synthetic materials to stabilize tissues or promote regrowth. However, synthetic materials induce a foreign body
response (FBR), which can lead to adverse outcomes. Our ability to design effective therapeutic strategies to
mitigate the FBR is hampered by an incomplete understanding of the molecular mechanisms that trigger the
FBR. The current dogma of the FBR assumes that serum proteins adsorb to biomaterial surfaces and unfold,
leading to irreversible adsorption and creating damage-associated molecular patterns (DAMPs) that initiate
inflammation. Our recent studies suggest that this view is insufficient and instead that proteins interact with
surfaces dynamically and that DAMPs may arise from multiple different sources. To this end, this proposal aims
to test the hypothesis that the adsorption of proteins onto implanted biomaterials is dynamic (turning over
continually and changing in time), and that the FBR is maintained by DAMPs derived from serum and by the
continuous generation of DAMPs that are produced by recruited myeloid cells. Two specific aims were developed
to test this hypothesis. Specific Aim #1 will determine the identity of surface-adsorbed proteins over time
in the FBR using bioorthogonal tagging. This aim will incorporate the methionine (Met) analog
azidohomoalanine to ubiquitously tag newly synthesized proteins at different times during the FBR in wildtype
mice with implants. The tagged and untagged newly synthesized proteins will be quantified and the proteins
identified with LC-MS/MS to determine the transient nature of the surface-adsorbed proteins. Specific Aim #2
will determine the origin of surface-adsorbed proteins and their identity in the FBR using cell-specific
bioorthogonal tagging. This aim will use a recently created mouse line that has a point mutation in methionyl-
tRNA synthetase (MetRS*) that enables cell-specific loading (via Cre drivers) of the Met analog azidonorleucine
into newly synthesized proteins. Albumin-Cre and LysM-Cre drivers will be used to determine the origin of the
adsorbed proteins from serum and myeloid cells, respectively. When combined with LC-MS/MS, the identity of
the adsorbed proteins from each source will also be determined. Each aim will investigate silicone as a model
implant, having a surface chemistry that is either hydrophobic (native surface) or hydrophilic (plasma-treated),
to study the role of hydrophobicity on the dynamics of surface-adsorbed proteins. In addition, a subset of proteins
from the LC-MS/MS results will be tested for their ability to activate macrophages in vitro and act as DAMPs. In
summary, this exploratory project will utilize recently developed in vivo protein labeling techniques to answer
fundamental questions about the events that trigger the FBR. Through this understanding, this project will
generate new hypotheses and inform the rational design of biomaterials to control surface-adsorbed DAMPs.
Long-term, our goal is to develop a biomaterial-based therapeutic intervention through which the FBR can be
prevented with unprecedented control and precision.
修复或再生肌肉骨骼系统损伤的疗法通常涉及植入
用于稳定组织或促进再生的合成材料。然而,合成材料会产生异物
反应(FBR),这可能导致不良后果。我们有能力设计有效的治疗策略
对触发 FBR 的分子机制的不完全理解阻碍了减轻 FBR
FBR。目前 FBR 的教条假设血清蛋白吸附到生物材料表面并展开,
导致不可逆吸附并产生损伤相关分子模式 (DAMP),从而启动
炎。我们最近的研究表明,这种观点是不够的,相反,蛋白质与
表面是动态的,并且 DAMP 可能来自多个不同的来源。为此,本提案旨在
检验蛋白质在植入生物材料上的吸附是动态的假设(翻转
持续且随时间变化),并且 FBR 由源自血清的 DAMP 和
由招募的骨髓细胞产生的 DAMP 持续生成。制定了两个具体目标
来检验这个假设。具体目标#1 将随着时间的推移确定表面吸附蛋白质的身份
在 FBR 中使用生物正交标记。该目标将纳入蛋氨酸 (Met) 类似物
叠氮高丙氨酸在野生型 FBR 期间的不同时间普遍标记新合成的蛋白质
带有植入物的小鼠。标记和未标记的新合成蛋白质将被定量,并且蛋白质
使用 LC-MS/MS 进行鉴定,以确定表面吸附蛋白的瞬时性质。具体目标#2
将使用细胞特异性确定表面吸附蛋白的来源及其在 FBR 中的身份
生物正交标记。该目标将使用最近创建的小鼠品系,该品系在甲硫氨酰-中具有点突变
tRNA 合成酶 (MetRS*),可实现 Met 类似物叠氮正亮氨酸的细胞特异性加载(通过 Cre 驱动程序)
转化为新合成的蛋白质。白蛋白-Cre 和 LysM-Cre 驱动程序将用于确定
分别从血清和骨髓细胞中吸附蛋白质。与 LC-MS/MS 结合使用时,可鉴定
来自每个来源的吸附蛋白质也将被确定。每个目标都将研究硅胶作为模型
植入物,具有疏水性(天然表面)或亲水性(等离子体处理)的表面化学性质,
研究疏水性对表面吸附蛋白质动力学的作用。此外,蛋白质的一个子集
LC-MS/MS 结果将测试它们在体外激活巨噬细胞并充当 DAMP 的能力。在
总之,这个探索性项目将利用最近开发的体内蛋白质标记技术来回答
有关触发 FBR 的事件的基本问题。通过这种理解,该项目将
产生新的假设并为生物材料的合理设计提供信息以控制表面吸附的 DAMP。
从长远来看,我们的目标是开发一种基于生物材料的治疗干预措施,通过这种干预措施,FBR 可以
以前所未有的控制力和精确度进行预防。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephanie J Bryant其他文献
Stephanie J Bryant的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephanie J Bryant', 18)}}的其他基金
Mapping protein dynamics and their origin at biomaterial surfaces in vivo
绘制体内生物材料表面的蛋白质动力学及其起源
- 批准号:
10378055 - 财政年份:2021
- 资助金额:
$ 16.75万 - 项目类别:
The Role of C-Flip in Mediating Pro-Survival Macrophages in the Foreign Body Response
C-Flip 在介导异物反应中促生存巨噬细胞中的作用
- 批准号:
10063721 - 财政年份:2020
- 资助金额:
$ 16.75万 - 项目类别:
The Role of C-Flip in Mediating Pro-Survival Macrophages in the Foreign Body Response
C-Flip 在介导异物反应中促生存巨噬细胞中的作用
- 批准号:
10210394 - 财政年份:2020
- 资助金额:
$ 16.75万 - 项目类别:
The Origin and Function of Macrophages in the Foreign Body Response
巨噬细胞在异物反应中的起源和功能
- 批准号:
9611776 - 财政年份:2018
- 资助金额:
$ 16.75万 - 项目类别:
Treatment of pediatric physeal injuries using a 3D printed biomimetic of growth plate cartilage
使用 3D 打印仿生生长板软骨治疗儿童骺损伤
- 批准号:
10112931 - 财政年份:2017
- 资助金额:
$ 16.75万 - 项目类别:
Treatment of pediatric physeal injuries using a 3D printed biomimetic of growth plate cartilage
使用 3D 打印仿生生长板软骨治疗儿童骺损伤
- 批准号:
9926114 - 财政年份:2017
- 资助金额:
$ 16.75万 - 项目类别:
Treatment of pediatric physeal injuries using a 3D printed biomimetic of growth plate cartilage
使用 3D 打印仿生生长板软骨治疗儿童骺损伤
- 批准号:
9246272 - 财政年份:2017
- 资助金额:
$ 16.75万 - 项目类别:
Bioinspired Mechanically Stiff Hydrogels for Osteochondral Tissue Regeneration
用于骨软骨组织再生的仿生机械刚性水凝胶
- 批准号:
10612072 - 财政年份:2016
- 资助金额:
$ 16.75万 - 项目类别:
Bioinspired Mechanically Stiff Hydrogels for Osteochondral Tissue Regeneration
用于骨软骨组织再生的仿生机械刚性水凝胶
- 批准号:
10446482 - 财政年份:2016
- 资助金额:
$ 16.75万 - 项目类别:
Mechanically Stiff Hydrogels for Osteochondral Tissue Engineering
用于骨软骨组织工程的机械刚性水凝胶
- 批准号:
9321175 - 财政年份:2016
- 资助金额:
$ 16.75万 - 项目类别:
相似国自然基金
咪唑基MOFs抗蛋白非特异性吸附机制与性能调控研究
- 批准号:22363006
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
量热法研究金属有机骨架基CO2吸附剂再生能量性质
- 批准号:22303103
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
选择性分离水产品中全氟辛酸的金属有机框架的设计制备及吸附机制研究
- 批准号:32302234
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
电场耦合过氧化物原位再生PFASs吸附饱和活性炭的效能与调控机制
- 批准号:52370126
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
双溶剂型RILMs的构筑及其对有序多孔聚离子液体吸附薄膜的调控合成研究
- 批准号:22308141
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Mapping protein dynamics and their origin at biomaterial surfaces in vivo
绘制体内生物材料表面的蛋白质动力学及其起源
- 批准号:
10378055 - 财政年份:2021
- 资助金额:
$ 16.75万 - 项目类别:
Enhancing Adsorption of Lung Surfactants at the Air-Water Interface Using Methods from Colloid Stability Theory
利用胶体稳定性理论的方法增强肺表面活性剂在空气-水界面的吸附
- 批准号:
10338180 - 财政年份:2020
- 资助金额:
$ 16.75万 - 项目类别:
Enhancing Adsorption of Lung Surfactants at the Air-Water Interface Using Methods from Colloid Stability Theory
利用胶体稳定性理论的方法增强肺表面活性剂在空气-水界面的吸附
- 批准号:
10829103 - 财政年份:2020
- 资助金额:
$ 16.75万 - 项目类别:
Enhancing Adsorption of Lung Surfactants at the Air-Water Interface Using Methods from Colloid Stability Theory
利用胶体稳定性理论的方法增强肺表面活性剂在空气-水界面的吸附
- 批准号:
9911287 - 财政年份:2020
- 资助金额:
$ 16.75万 - 项目类别:
Predicting the Toxicity of Nanomaterials by a Transforming Protein Corona
通过转化蛋白电晕预测纳米材料的毒性
- 批准号:
8625112 - 财政年份:2014
- 资助金额:
$ 16.75万 - 项目类别: