Treatment of pediatric physeal injuries using a 3D printed biomimetic of growth plate cartilage
使用 3D 打印仿生生长板软骨治疗儿童骺损伤
基本信息
- 批准号:9246272
- 负责人:
- 金额:$ 19.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-03-01 至 2019-02-28
- 项目状态:已结题
- 来源:
- 关键词:3D PrintAffectAgeAppearanceAreaBiocompatible MaterialsBiomimeticsBone GrowthBone LengtheningCCL25 geneCartilageChemicalsChildChildhoodChondrocytesChondrogenesisClinicClinical ManagementComplexCuesDeformityDevelopmentEncapsulatedEngineeringEpiphysial cartilageExcisionExtracellular MatrixFatty acid glycerol estersFractureGoalsGrowthHistologyHydrogelsImpairmentImplantInjuryLeadLeftLocationMeasuresMechanicsMesenchymal Stem CellsMineralsModelingMorphologyNatural regenerationOperative Surgical ProceduresOryctolagus cuniculusOsteogenesisPhasePlasticizersPrintingPropertyQuality of lifeRecruitment ActivityRecurrenceSignal TransductionSiteStem cellsStromal Cell-Derived Factor 1StructureTechnologyTestingThickTimeTissuesTranslatingWorkbonecartilage repaircartilaginouscell motilitychemokinedesigndigitalimplantationimprovedinjuredlong bonemechanical propertiesmicroCTmimeticsnovelpediatric patientspreventscaffoldskeletalstem cell differentiationsubchondral bonetissue repair
项目摘要
Physeal injuries account for 30% of all pediatric fractures and can result in impaired bone growth. The physis
(or, “growth plate”) is a cartilage region at the end of children's long bones that is responsible for longitudinal
bone growth. Once damaged, mesenchymal stem cells from the underlying subchondral bone migrate into the
injured physis, undergo osteogenesis, and form unwanted bony tissue, referred to as a “bony bar”. This can
lead to angular deformities or completely halt longitudinal bone growth, which is devastating for children that
are still growing. Current surgical treatments involve the removal of the bony bar. The site is often filled either
with a soft fat graft or a hard, non-degradable plastic, both of which offer imperfect solutions leading to collapse
of the resection site or the dislodgement of the biomaterial, respectively. Thus, the overall goal of this project is
to develop an improved treatment option that utilizes 3D printing technology to engineer a biomimetic of growth
plate cartilage containing mechanically-graded 3D stiff structures in-filled with a soft cartilage biomimetic
hydrogel. Our hypothesis is that a 3D printed biomimetic of growth plate cartilage prevents collapse at
the resection site through its structure and simultaneously recruits MSCs to direct them through
zonally appropriate physiochemical cues to a chondrogenic, not osteogenic, lineage and prevents
bony bar formation by replacing it with a cartilaginous repair tissue. Thus, long-term the 3D printed
biomimetic will allow normal bone elongation after physeal injury. To test this hypothesis, we have developed
two aims for the R21 phase and two aims for the R33 phase. In the R21 phase, we will (1) print a 3D construct
that mimics the morphology and mechanical properties of growth plate cartilage (Aim 1) and (2) evaluate the
ability of a 3D printed biomimetic of growth plate cartilage to prevent bony bar formation in a rabbit model of
physeal injury (Aim 2). At the conclusion of the 2-year exploratory phase, we expect to have established a
novel biomimetic of growth plate cartilage designed through 3D printing technology and confirmed that a 3D
printed stiff structure mimicking that of the growth plate and infilled with a soft hydrogel prevents bony bar
reformation. In the R33 phase, we will (1) assess cartilage formation in the implanted 3D printed biomimetic
construct in a rabbit model of physeal injury through the recruitment of endogenous stem cells (Aim 3), and (2)
evaluate the ability of a 3D printed biomimetic of growth plate cartilage to enable longitudinal bone growth in a
rabbit model of physeal injury, which is followed for 1 year after implantation. At the conclusion of the 3-year
R33 phase, we expect to have demonstrated that filling the site after bony bar resection with a 3D printed
biomimetic of growth plate cartilage prevents bony bar reformation and supports cartilage formation that is
eventually converted into new bone following growth to skeletal maturity. By providing a solution to restore
normal bone growth, this 3D printed biomimetic of growth plate cartilage has the potential to be translated into
the clinic to improve the quality of life of affected children.
骺板损伤占所有儿童骨折的 30%,并可能导致骨骼生长受损。
(或“生长板”)是儿童长骨末端的软骨区域,负责纵向生长
一旦受损,软骨下骨的间充质干细胞就会迁移到骨中。
受伤的骺板,进行成骨,并形成不需要的骨组织,称为“骨棒”。
导致成角畸形或完全停止纵向骨骼生长,这对于患有以下疾病的儿童来说是毁灭性的:
目前的手术治疗包括切除骨棒,该部位通常被填充。
使用柔软的脂肪移植物或坚硬的不可降解塑料,这两种方法都提供了导致塌陷的不完美解决方案
因此,该项目的总体目标是。
开发一种改进的治疗方案,利用 3D 打印技术来设计仿生生长
板软骨包含机械分级的 3D 刚性结构,内部填充软软骨仿生材料
我们的假设是,3D 打印的生长板软骨仿生材料可以防止塌陷。
通过其结构来识别切除部位,同时招募 MSC 引导它们通过
对软骨形成(而非成骨)谱系具有适当的生理化学线索,并预防
通过用软骨修复组织替代骨棒来形成骨棒,从而实现长期的 3D 打印。
为了检验这一假设,我们开发了仿生技术。
R21 阶段的两个目标和 R33 阶段的两个目标 在 R21 阶段,我们将 (1) 打印 3D 结构。
模拟生长板软骨的形态和机械特性(目标 1)和(2)评估
3D 打印生长板软骨仿生体防止兔子模型中骨棒形成的能力
在为期 2 年的探索阶段结束时,我们期望建立一个
通过3D打印技术设计的新型生长板软骨仿生体,并证实3D
模仿生长板的印刷刚性结构并填充柔软的水凝胶可防止骨棒
在 R33 阶段,我们将 (1) 评估植入的 3D 打印仿生体中的软骨形成。
通过招募内源干细胞构建兔骺损伤模型(目标 3)和(2)
评估生长板软骨 3D 打印仿生体实现纵向骨生长的能力
兔骺损伤模型,植入后随访 1 年,3 年结束时进行随访。
R33 阶段,我们希望能够证明,用 3D 打印的材料填充骨棒切除术后的部位
生长板软骨的仿生可防止骨棒重组并支持软骨形成
通过提供恢复溶液,最终在生长到骨骼成熟后转化为新骨。
正常骨骼生长,这种生长板软骨的 3D 打印仿生材料有潜力转化为
该诊所旨在改善受影响儿童的生活质量。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephanie J Bryant其他文献
Stephanie J Bryant的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephanie J Bryant', 18)}}的其他基金
Mapping protein dynamics and their origin at biomaterial surfaces in vivo
绘制体内生物材料表面的蛋白质动力学及其起源
- 批准号:
10378055 - 财政年份:2021
- 资助金额:
$ 19.42万 - 项目类别:
Mapping protein dynamics and their origin at biomaterial surfaces in vivo
绘制体内生物材料表面的蛋白质动力学及其起源
- 批准号:
10206869 - 财政年份:2021
- 资助金额:
$ 19.42万 - 项目类别:
The Role of C-Flip in Mediating Pro-Survival Macrophages in the Foreign Body Response
C-Flip 在介导异物反应中促生存巨噬细胞中的作用
- 批准号:
10063721 - 财政年份:2020
- 资助金额:
$ 19.42万 - 项目类别:
The Role of C-Flip in Mediating Pro-Survival Macrophages in the Foreign Body Response
C-Flip 在介导异物反应中促生存巨噬细胞中的作用
- 批准号:
10210394 - 财政年份:2020
- 资助金额:
$ 19.42万 - 项目类别:
The Origin and Function of Macrophages in the Foreign Body Response
巨噬细胞在异物反应中的起源和功能
- 批准号:
9611776 - 财政年份:2018
- 资助金额:
$ 19.42万 - 项目类别:
Treatment of pediatric physeal injuries using a 3D printed biomimetic of growth plate cartilage
使用 3D 打印仿生生长板软骨治疗儿童骺损伤
- 批准号:
10112931 - 财政年份:2017
- 资助金额:
$ 19.42万 - 项目类别:
Treatment of pediatric physeal injuries using a 3D printed biomimetic of growth plate cartilage
使用 3D 打印仿生生长板软骨治疗儿童骺损伤
- 批准号:
9926114 - 财政年份:2017
- 资助金额:
$ 19.42万 - 项目类别:
Bioinspired Mechanically Stiff Hydrogels for Osteochondral Tissue Regeneration
用于骨软骨组织再生的仿生机械刚性水凝胶
- 批准号:
10612072 - 财政年份:2016
- 资助金额:
$ 19.42万 - 项目类别:
Bioinspired Mechanically Stiff Hydrogels for Osteochondral Tissue Regeneration
用于骨软骨组织再生的仿生机械刚性水凝胶
- 批准号:
10446482 - 财政年份:2016
- 资助金额:
$ 19.42万 - 项目类别:
Mechanically Stiff Hydrogels for Osteochondral Tissue Engineering
用于骨软骨组织工程的机械刚性水凝胶
- 批准号:
9321175 - 财政年份:2016
- 资助金额:
$ 19.42万 - 项目类别:
相似国自然基金
基于年龄和空间的非随机混合对性传播感染影响的建模与研究
- 批准号:12301629
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多氯联苯与机体交互作用对生物学年龄的影响及在衰老中的作用机制
- 批准号:82373667
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
母传抗体水平和疫苗初种年龄对儿童麻疹特异性抗体动态变化的影响
- 批准号:82304205
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
年龄结构和空间分布对艾滋病的影响:建模、分析与控制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
随机噪声影响下具有年龄结构的布鲁氏菌病动力学行为与最优控制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Novel technique to detect microcracks in the progression of Osteoporosis
检测骨质疏松症进展中微裂纹的新技术
- 批准号:
10557618 - 财政年份:2023
- 资助金额:
$ 19.42万 - 项目类别:
Development of a 3D neurovascular unit for in vitro modeling of subarachnoid hemorrhage and screening therapies
开发用于蛛网膜下腔出血体外建模和筛选治疗的 3D 神经血管单元
- 批准号:
10722387 - 财政年份:2023
- 资助金额:
$ 19.42万 - 项目类别:
Increasing access to chemistry for high schoolers with blindness: a program to jump start Central Texas
增加失明高中生接触化学的机会:一项启动德克萨斯州中部的计划
- 批准号:
10600066 - 财政年份:2022
- 资助金额:
$ 19.42万 - 项目类别:
Engineering Spatiotemporal Osteochondral Tissue Formation with Tunable 3D-Printed Scaffolds
使用可调谐 3D 打印支架工程设计时空骨软骨组织形成
- 批准号:
10373762 - 财政年份:2022
- 资助金额:
$ 19.42万 - 项目类别:
Engineering Spatiotemporal Osteochondral Tissue Formation with Tunable 3D-Printed Scaffolds
使用可调谐 3D 打印支架工程设计时空骨软骨组织形成
- 批准号:
10629168 - 财政年份:2022
- 资助金额:
$ 19.42万 - 项目类别: