Feasibility of Mobile Technology-Based Assessments of Community Reintegration in Homeless Veterans
基于移动技术的无家可归退伍军人重返社区评估的可行性
基本信息
- 批准号:10000777
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-10-01 至 2022-09-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAwardCase ManagerCellular PhoneClinicalClinical assessmentsCodeCollectionCommunitiesCommunity IntegrationCommunity SurveysComplexCuesDataData CollectionEcological momentary assessmentEmotionsEvaluationFailureFailure to ThriveFocus GroupsFutureGlobal Positioning SystemGoalsGrainHealth PersonnelHigh PrevalenceHomeHomelessnessHourHousingIndependent LivingIndividualInterventionInterviewLocationLos AngelesMeasuresMethodsModalityOutcomeParticipantPhasePhenotypePopulationProceduresQualitative EvaluationsQualitative MethodsRecommendationRecoveryReportingResearchSamplingServicesSeveritiesSocial FunctioningStructureSurveysSystemTechnologyTelephoneThinkingTimeTreatment FailureU.S. Department of Housing and Urban DevelopmentVeteransVisitWorkadherence ratebaseclinical applicationcommunity reintegrationdigitalexperiencefollow-upindexinginnovationmilitary veteranmobile computingnovelprogramsrecidivismsensorsevere mental illnesssocialstatisticssupported housingtreatment researchtreatment servicesusability
项目摘要
Veteran homelessness is a national crisis and Los Angeles has the highest homeless Veteran population in the
US. Despite impressive progress in providing housing for Veterans, particularly through the HUD-VASH
program, a fundamental problem remains: Permanent housing is a necessary first step, but not a
sufficient condition, for successful community reintegration. Community reintegration, defined as full
engagement in work, social, independent living, and recreational activities, does not arise automatically once
housing is provided. Despite the provision of housing, recidivism (return to homelessness) is high. Further,
the few relevant studies of non-VA samples demonstrate a failure to thrive after supported housing is provided
(e.g., vocational and social functioning remain poor). HUD-VASH clinicians describe similarly poor outcomes
in Veterans, but there are hardly any data on the types, severity, and causes of problems in community
reintegration in recently-housed Veterans (RHVs). This information is essential for developing recovery-
focused treatments that can be implemented in this complex, rapidly growing Veteran population.
In 2015, our team established the VA Research Enhancement Award Program (REAP) on Enhancing
Community Integration for Homeless Veterans in Los Angeles. The REAP is devoted to understanding the
scope of reintegration problems, identifying their determinants, and developing novel interventions. We have
identified two major challenges in our work with RHVs and their treatment providers. 1. Inadequacy of
measures: Existing measures of community integration lack the sensitivity needed to identify the specific
challenges faced by RHVs, and there have been no fine-grained assessments of how RHVs actually spend
their time. 2. Poor rates of participation: It is extremely difficult to engage RHVs in treatment and research
that require repeated visits to the VA campus. Consequently, our research assessments provide only single
cross-sectional snapshots of integration that fail to capture the dynamic fluctuations in their lives. Furthermore,
failure to engage in available treatment services contributes to recidivism and poor outcomes. We therefore
believe it is necessary to look beyond traditional assessment and treatment modalities to address these
challenges. New mobile technologies appear ideally suited this purpose.
The goal of this proposal is to evaluate the feasibility of Digital Phenotyping (DP) delivered via mobile
smartphone technology to assess community integration in RHVs with Serious Mental Illnesses (SMIs). We
will use both active (Ecological Momentary Assessment [EMA] of social contact) and passive (Global
Positioning System measures of mobility in the community) DP indices. Active EMA indices involve cueing
participants to complete brief surveys multiple times per day over a week to obtain more fine-grained,
ecologically valid information than traditional cross-sectional measures. Passive indices are automatically
collected in the background using standard phone sensors. DP indices have never been examined in this
population. To evaluate feasibility in this challenging population, we propose a 2-year mixed quantitative/
qualitative methods study with two phases. Phase 1 (Aim 1, Months 1-3) consists of focus groups with key
stakeholders to adapt an existing EMA community integration survey (originally developed for SMI) for use in
RHVs and to understand RHVs' views about passive data collection via smartphone. Phase 2 (Aim 2, Months
4-24) includes 27 RHVs with SMIs in HUD-VASH who will complete (a) baseline clinical assessments of
community integration, (b) a 7-day (5 surveys/day) DP period to evaluate feasibility, (c) post-DP quantitative/
qualitative evaluations of acceptability. The proposal aims to break new ground in the use of mobile
technologies, which have the potential for innovative assessment and treatment delivery applications for RHVs.
资深无家可归是一场国家危机,洛杉矶拥有最高的无家可归者人口
我们。尽管在为退伍军人提供住房方面令人印象深刻,尤其是通过HUD-Vash
计划,一个基本问题仍然存在:永久住房是必要的第一步,但不是
足够的条件,可以成功地进行社区重返社会。社区重返社会,被定义为完整
参与工作,社交,独立生活和娱乐活动,不会自动出现一次
提供住房。尽管提供了住房,但累犯(恢复无家可归)还是很高的。更远,
对非VA样品的少数相关研究表明,在提供了支撑住房后未能繁衍生息
(例如,职业和社会功能仍然很差)。 HUD-VASH临床医生描述了类似的结果
在退伍军人中,但是几乎没有关于社区问题类型,严重性和原因的数据
在最近居住的退伍军人(RHVS)中重新融合。此信息对于开发恢复至关重要 -
可以在这个复杂的,快速增长的退伍军人人口中实施的重点治疗。
2015年,我们的团队建立了VA研究增强奖计划(REAP)
洛杉矶无家可归者退伍军人的社区融合。收获致力于理解
重新整合问题的范围,确定其决定因素并制定新颖的干预措施。我们有
在我们与RHV及其治疗提供者的工作中确定了两个主要挑战。 1。不足
措施:现有的社区融合措施缺乏确定特定的敏感性
RHVS面临的挑战,并且没有对RHV的实际花费进行精细的评估
他们的时间。 2。参与率较差:参与治疗和研究的RHV非常困难
这需要反复访问VA校园。因此,我们的研究评估仅提供单一
整合的横截面快照无法捕捉生活中动态波动。此外,
未能从事可用的治疗服务有助于累犯和不良的结果。因此,我们
认为有必要超越传统评估和治疗方式来解决这些问题
挑战。新的移动技术似乎非常适合此目的。
该提案的目的是评估通过移动传递的数字表型(DP)的可行性
智能手机技术评估患有严重精神疾病(SMI)的RHV中的社区融合。我们
将使用主动(社会接触的生态瞬时评估[EMA)和被动(全球)
定位系统在社区中的移动性测量)DP指数。主动EMA指数涉及提示
参与者每天每天多次完成简短的调查,以获得更多的细粒度,
与传统的横截面措施相比,生态有效的信息。被动指数自动
使用标准电话传感器在后台收集。 DP指数从未在此检查
人口。为了评估这个具有挑战性的人群的可行性,我们提出了2年的混合定量/
定性方法研究了两个阶段。第1阶段(目标1,1-3个月)由焦点组组成
利益相关者适应现有的EMA社区集成调查(最初是为SMI开发的)
RHVS并了解RHVS通过智能手机收集被动数据的看法。第2阶段(目标2,月份
4-24)包括HUD-VASH中的27个RHV,将完成(a)基线临床评估
社区整合,(b)7天(5次调查/天)DP时期以评估可行性,(c)DP后定量/
可接受性的定性评估。该提案旨在在使用手机方面打破新的基础
技术具有创新评估和治疗交付申请的潜力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael F. Green其他文献
A Novel Combination of Cisplatin, Irinotecan, and Capecitabine in Patients with Advanced Cancer
顺铂、伊立替康和卡培他滨的新型组合治疗晚期癌症患者
- DOI:
10.1023/b:drug.0000011796.20332.a9 - 发表时间:
2004 - 期刊:
- 影响因子:3.4
- 作者:
M. Jefford;M. Michael;M. Rosenthal;I. Davis;Michael F. Green;B. McClure;Jennifer Smith;B. Waite;J. Zalcberg - 通讯作者:
J. Zalcberg
Cognitive Remediation of Psychotic Patients
精神病患者的认知治疗
- DOI:
10.1007/978-1-4757-6392-8_15 - 发表时间:
1998 - 期刊:
- 影响因子:2.7
- 作者:
R. Kern;Michael F. Green - 通讯作者:
Michael F. Green
Latent structure of cognition in schizophrenia: a confirmatory factor analysis of the MATRICS Consensus Cognitive Battery (MCCB)
精神分裂症认知的潜在结构:MATRICS共识认知电池(MCCB)的验证性因素分析
- DOI:
10.1017/s0033291715002433 - 发表时间:
2015 - 期刊:
- 影响因子:6.9
- 作者:
A. McCleery;Michael F. Green;G. Hellemann;L. Baade;J. Gold;R. Keefe;R. Kern;R. Mesholam;L. Seidman;K. Subotnik;J. Ventura;K. Nuechterlein - 通讯作者:
K. Nuechterlein
Ambiguous-handedness: Incidence in a non-clinical sample
用手不明确:非临床样本中的发生率
- DOI:
10.1016/0028-3932(89)90043-2 - 发表时间:
1989 - 期刊:
- 影响因子:2.6
- 作者:
P. Satz;L. Nelson;Michael F. Green - 通讯作者:
Michael F. Green
Schizophrenia Etiology and Neurocognition
精神分裂症病因学和神经认知
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
B. Cornblatt;Michael F. Green;E. Walker;V. Mittal - 通讯作者:
V. Mittal
Michael F. Green的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael F. Green', 18)}}的其他基金
Determining the role of social reward learning in social anhedonia in first-episode psychosis using motivational interviewing as a probe in a perturbation-based neuroimaging approach
使用动机访谈作为基于扰动的神经影像学方法的探索,确定社交奖励学习在首发精神病社交快感缺乏中的作用
- 批准号:
10594181 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Enhancing Community Integration for Homeless Veterans
加强无家可归退伍军人的社区融合
- 批准号:
9995282 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Enhancing Community Integration for Homeless Veterans
加强无家可归退伍军人的社区融合
- 批准号:
10275485 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Feasibility of Mobile Technology-Based Assessments of Community Reintegration in Homeless Veterans
基于移动技术的无家可归退伍军人重返社区评估的可行性
- 批准号:
10469974 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Enhancing Community Integration for Homeless Veterans
加强无家可归退伍军人的社区融合
- 批准号:
9475101 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Enhancing Community Integration for Homeless Veterans
加强无家可归退伍军人的社区融合
- 批准号:
8887042 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Homeless Veterans with Mental Illness: Predicting and Enhancing Recovery
患有精神疾病的无家可归退伍军人:预测和促进康复
- 批准号:
9026597 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Homeless Veterans with Mental Illness: Predicting and Enhancing Recovery
患有精神疾病的无家可归退伍军人:预测和促进康复
- 批准号:
9490202 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Homeless Veterans with Mental Illness: Predicting and Enhancing Recovery
患有精神疾病的无家可归退伍军人:预测和促进康复
- 批准号:
9001837 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Homeless Veterans with Mental Illness: Predicting and Enhancing Recovery
患有精神疾病的无家可归退伍军人:预测和促进康复
- 批准号:
8667349 - 财政年份:2014
- 资助金额:
-- - 项目类别:
相似国自然基金
分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
- 批准号:12371308
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
资源受限下集成学习算法设计与硬件实现研究
- 批准号:62372198
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于物理信息神经网络的电磁场快速算法研究
- 批准号:52377005
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
考虑桩-土-水耦合效应的饱和砂土变形与流动问题的SPH模型与高效算法研究
- 批准号:12302257
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向高维不平衡数据的分类集成算法研究
- 批准号:62306119
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Implementation of an impact assessment tool to optimize responsible stewardship of genomic data in the cloud
实施影响评估工具以优化云中基因组数据的负责任管理
- 批准号:
10721762 - 财政年份:2023
- 资助金额:
-- - 项目类别:
HEAR-HEARTFELT (Identifying the risk of Hospitalizations or Emergency depARtment visits for patients with HEART Failure in managed long-term care through vErbaL communicaTion)
倾听心声(通过口头交流确定长期管理护理中的心力衰竭患者住院或急诊就诊的风险)
- 批准号:
10723292 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Information-Theoretic Surprise-Driven Approach to Enhance Decision Making in Healthcare
信息论惊喜驱动方法增强医疗保健决策
- 批准号:
10575550 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Optimizing the Diagnostic Strategy for Acute Musculoskeletal Infections in Children: Evaluating the Clinical Performance and Comparative Cost of a Noninvasive Diagnostic Technique
优化儿童急性肌肉骨骼感染的诊断策略:评估无创诊断技术的临床表现和比较成本
- 批准号:
10664298 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Molecular origins and evolution to chemoresistance in germ cell tumors
生殖细胞肿瘤中化学耐药性的分子起源和进化
- 批准号:
10443070 - 财政年份:2023
- 资助金额:
-- - 项目类别: