Information-Theoretic Surprise-Driven Approach to Enhance Decision Making in Healthcare
信息论惊喜驱动方法增强医疗保健决策
基本信息
- 批准号:10575550
- 负责人:
- 金额:$ 55.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdjuvant TherapyAlgorithmsAlzheimer&aposs DiseaseAwardBRCA mutationsBeliefBreast Cancer PatientCharacteristicsClinicClinicalComplexComputer softwareCoronary heart diseaseDataDecision MakingDiagnosisDiagnostic testsDiseaseDisparityEarly DiagnosisFamily history ofGoalsGuidelinesHealthHealthcareImageImaging TechniquesInformation TheoryInstitutionInterventionLettersLinkLow Income PopulationMachine LearningMagnetic Resonance ImagingMalignant NeoplasmsMalignant neoplasm of ovaryMedicalMetabolicMethodologyMorphologyMutationNational Comprehensive Cancer NetworkNewly DiagnosedOperative Surgical ProceduresOutcomes ResearchPathogenicityPatientsPhenotypePopulations at RiskPredictive ValuePythonsQuality of lifeReportingResearchRunningShapesSiteStandardizationTestingValidationVariantWomanWorkaccurate diagnosisbrca genecare burdenclinical decision-makingfallsgenerative adversarial networkgenetic makeupgenetic testingimaging modalityimaging softwareimprovedindividualized medicinemachine learning algorithmmalignant breast neoplasmmutation carriermutational statusnovelopen sourcepatient screeningpatient stratificationpredictive modelingprogramsquantitative imagingradiomicsstandard of caretooltreatment strategytumor
项目摘要
PROJECT SUMMARY
Traditional guidelines used in clinical decision-making alone are often insufficient in accurately stratifying patients
for diagnostic testing. For instance, the National Comprehensive Cancer Network (NCCN) guidelines for
stratifying patients for germline genetic testing of breast cancer fails to identify nearly 50% of the patients who
might have a BRCA mutation. With advancements in imaging techniques and black-box machine learning
algorithms, radiomics has emerged as a promising tool for making predictions in a wide range of health conditions
such as breast and ovarian cancer, Alzheimer’s disease, and coronary heart disease. Based on these studies,
the underlying hypothesis of this research is that imaging phenotypes obtained from radiomics together
with traditional guidelines can screen patients for underlying diseases (in this research, germline BRCA
mutation) with a higher positive predictive value than the traditional guidelines alone. Here, we refer to
the NCCN guidelines as the traditional guidelines.
However, little is known about the causal relationship between these deleterious health conditions and
quantitative imaging phenotypes. Together with the lack of standards for quantifying and reporting imaging
phenotypes across multiple institutions, it is currently not feasible to integrate them into clinical decision-making.
To this end, this research will focus on the following two specific aims to address these challenges and
subsequently validate the hypothesis. Specific Aim 1: MRI harmonization via amplitude synchronization to
mitigate the scanner-to-scanner variability. Specific Aim 2: Causal inference and information theory to
discover the causal relationships between BRCA mutation and imaging phenotypes and subsequently integrate
them into clinical decision making.
While the proposed research focuses on stratifying patients for germline BRCA testing based on magnetic
resonance imaging phenotypes, the methodology and algorithms generalize to other health conditions and
imaging modalities. The outcome of this research will lead to a new paradigm of clinical decision making where
medical practitioners would be able to link imaging phenotypes with underlying health conditions—akin to how
abnormal levels on comprehensive metabolic panels act as indicators of potential health problems—and prepare
for appropriate interventions.
项目摘要
仅临床决策中使用的传统准则通常不足以准确地对患者进行分层
例如,国家综合癌症网络(NCCN)指南
对乳腺癌的种系基因测试进行分层的患者无法识别几乎50%的患者
可能有BRCA突变。随着成像技术和黑箱机器学习的进步
算法,放射素学已成为在广泛的健康状况下进行预测的承诺工具
例如乳腺癌和卵巢癌,阿尔茨海默氏病以及冠心病。基于这些研究,
这项研究的基本假设是,从放射线学获得的成像表型一起
借助传统准则,可以筛查患者的潜在疾病(在这项研究中,生殖线BRCA
突变)比单独的传统准则具有更高的积极预测价值。在这里,我们指的是
NCCN指南作为传统准则。
但是,对于这些已删除的健康状况与
定量成像表型。加上缺乏量化和报告成像的标准
在多个机构的表型中,目前不可行将它们整合到临床决策中。
为此,这项研究将侧重于以下两个具体目的,以应对这些挑战和
随后验证该假设。特定目的1:通过放大器同步进行MRI协调
减轻扫描仪到扫描仪的可变性。特定目的2:因果推论和信息理论
发现BRCA突变与成像表型之间的因果关系,然后整合
他们参与临床决策。
而拟议的研究重点是根据磁性进行种系BRCA测试的患者进行分层
共振成像表型,方法和算法推广到其他健康状况,并且
成像方式。这项研究的结果将导致新的临床决策范式
医生将能够将成像表型与潜在的健康状况联系起来 - 金如何
综合代谢面板的异常水平是潜在健康问题的指标,并准备
进行适当的干预措施。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ashif Iquebal其他文献
Ashif Iquebal的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于磁共振APT成像的乳腺癌新辅助治疗敏感性预测研究
- 批准号:82302153
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
机器学习辅助按需设计多酶活性纳米酶用于糖尿病足溃疡治疗研究
- 批准号:32371465
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于多时序CT影像与病理WSI的非小细胞肺癌新辅助免疫治疗疗效预测研究
- 批准号:82360356
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于深度学习和肿瘤-免疫-间质生物模型的肿瘤药物联合治疗疗效预测和辅助决策研究
- 批准号:72374119
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
类病毒结构纳米载体辅助A型肉毒毒素膀胱内递送治疗膀胱过度活动症的设计和应用研究
- 批准号:82300874
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Project 2: Mechanisms of Resistance to Neoantigen Vaccines in PDAC
项目2:PDAC新抗原疫苗耐药机制
- 批准号:
10708575 - 财政年份:2023
- 资助金额:
$ 55.45万 - 项目类别:
Computational imaging approaches to personalized gastric cancer treatment
个性化胃癌治疗的计算成像方法
- 批准号:
10585301 - 财政年份:2023
- 资助金额:
$ 55.45万 - 项目类别:
Using Machine Learning to Improve the Predictive Accuracy of Disease Cure
使用机器学习提高疾病治疗的预测准确性
- 批准号:
10654253 - 财政年份:2023
- 资助金额:
$ 55.45万 - 项目类别:
Defining therapeutic strategies for boosting T-cell infiltration into cold tumors with spatial proteomics and machine learning
利用空间蛋白质组学和机器学习确定促进 T 细胞浸润冷肿瘤的治疗策略
- 批准号:
10743501 - 财政年份:2023
- 资助金额:
$ 55.45万 - 项目类别:
Quantitative assessment of pre-metastatic immune subversion as a risk factor for melanoma relapse
转移前免疫颠覆作为黑色素瘤复发危险因素的定量评估
- 批准号:
10310757 - 财政年份:2022
- 资助金额:
$ 55.45万 - 项目类别: