Technology Research and Development Project 3 (Characterizing and Modifying Cortical Processes)
技术研发项目3(表征和修改皮质过程)
基本信息
- 批准号:10017992
- 负责人:
- 金额:$ 25.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-10 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAnatomyAreaAuditoryBehaviorBrainBrain regionCaliforniaClinicalCollaborationsComputing MethodologiesDependenceDevelopmentDevicesDiagnosisDiffusion Magnetic Resonance ImagingDiseaseEffectivenessElectric StimulationElectrical Stimulation of the BrainElectrodesEpilepsyFunctional ImagingFundingGamblingGenerationsGoalsHumanIndividualKnowledgeLeadLocationMapsMethodsModalityNeurologic EffectParkinson DiseasePopulationProcessProtocols documentationScientistSiteSpeechSpeech PerceptionStimulusStrokeSurfaceSystemTechniquesTechnologyTestingTimeUnited StatesUnited States National Institutes of HealthUniversitiesVariantWorkbaseconditioningcortex mappingdesigndisabilityefficacy testingimaging systemimprovedlearning strategynervous system disorderneurophysiologyneurotechnologynew technologynovelrelating to nervous systemresponsetechnology research and development
项目摘要
Neurological disorders affect millions of people in the United States and worldwide. Better understanding of the
short-term changes and the persistent changes that result from precisely targeted electrical stimulation of brain
networks can lead to novel technologies that improve diagnosis and treatment of these disorders.
Intracranial recording/stimulation techniques using electrocorticographic (ECoG) electrodes on the brain surface
and/or depth electrodes (stereoencephalography (SEEG)) provide a powerful method for spatially and temporally
precise recording and stimulation, but current stimulation protocols are based largely on trial-and-error and thus
are probably suboptimal. Taking optimal advantage of ECoG/SEEG requires the ability to design adaptive record-
ing/stimulation protocols that induce specific beneficial changes in the brain processes underlying behavior. The
work proposed here will address this need by creating a stimulation-based system that can map cortical/subcortical
functional networks and can modulate these networks so as to restore brain function.
TR&D3's long-term goal is to develop and iteratively optimize a new generation of adaptive neurotechnologies that
can introduce predictable changes in brain networks, and to clinically test the efficacy of those technologies for
alleviating the devastating effects of neurological disorders such as stroke. To achieve this goal, TR&D3 has two
Specific Aims:
Aim 1. To establish the short-term changes in network activity and resulting behavior that are produced by electrical
stimulation. Aim 1 comprises two studies. The first study will use electrical stimulation to establish which and
how brain networks are activated by electrical stimulation of specific locations. The second study will determine
how input produced by electrical stimulation interacts with moment-by-moment variations in cortical excitability to
produce population-level responses.
Aim 2. To establish the persistent changes to network activity resulting from electrical stimulation. The first study
will determine to what extent stimulus-induced changes modify behavior in the short term and the long-term. The
second study will assess the dependence of these changes on stimulus amplitude.
These two aims will produce a stimulation-based functional imaging system. To validate and optimize this novel
system, TR&D3 will engage in two collaborative projects with scientists at the University of California (Berkeley)
and at MIT. Together, these collaborations will establish the effectiveness and value of the new stimulation-based
functional imaging system.
By accomplishing these aims, TR&D3 should produce new understanding of how electrical stimulation produces
short-term and persistent changes in brain function. It should also create a new clinical system that can map
brain networks and can target specific beneficial changes in function. Thus, this work should increase scientific
understanding and enhance treatment for a range of neurological disorders.
神经系统疾病会影响美国和全球数以百万计的人。
短期变化以及由精确的靶向电刺激导致的持续变化
网络可以导致新技术,以改善这些疾病的诊断和治疗。
颅内记录/刺激技术使用脑表面上的电视学(ECOG)电极
和/或深度电极(立体镜(SEEG))为空间和时间上提供了强大的方法
精确的记录和刺激,但是当前的刺激方案基于反复试验,因此
是次优的可能性。
在大脑过程中诱导特定变化的ING/刺激方案
这里提供的支撑的工作将通过创建一个基于刺激的系统来满足这种需求,该系统可以映射皮质/皮质下
功能网络并可以调节网络以恢复大脑功能。
TR&D3的长期目标是发展和迭代性优化新一代的适应性神经技术,
可以引入大脑网络的可预测变化,并在临床上测试技术的有效性
减轻神经系统疾病(例如中风)的毁灭性影响。
特定目的:
目的1。建立由电气产生的网络活动和由此产生的行为的短暂变化
刺激1。
Brerain网络如何通过特定位置的电刺激激活。
电刺激产生的输入如何与皮质脱位的瞬间变化相互作用
产生人群级反应。
目标2。建立对电刺激导致的网络活动的持续变化。
将确定刺激诱导的变化在何种程度上改变了短期和长期的行为
第二项研究将评估变化对刺激幅度的依赖性。
这两个目标将产生基于原始的融合功能成像系统。
系统,TR&D3将与加利福尼亚大学(伯克利大学)的科学家进行两个合作项目
在麻省理工学院,这些合作将建立基于新刺激的建立和价值
功能成像系统。
通过实现这些目标,TR&D3应该对电刺激的产生方式产生新的了解
短期和持续的大脑功能变化。
大脑网络并可以针对功能的特定利益变化。
了解并增强对一系列神经系统疾病的治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GERWIN SCHALK其他文献
GERWIN SCHALK的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GERWIN SCHALK', 18)}}的其他基金
Technology Research and Development Project 3 (Characterizing and Modifying Cortical Processes)
技术研发项目3(表征和修改皮质过程)
- 批准号:
10456338 - 财政年份:2014
- 资助金额:
$ 25.48万 - 项目类别:
Technology Research and Development Project 3 (Characterizing and Modifying Cortical Processes)
技术研发项目3(表征和修改皮质过程)
- 批准号:
10239066 - 财政年份:2014
- 资助金额:
$ 25.48万 - 项目类别:
General Purpose Brain-Computer Interface (BCI) System
通用脑机接口(BCI)系统
- 批准号:
8045862 - 财政年份:2010
- 资助金额:
$ 25.48万 - 项目类别:
BCI2000: SOFTWARE FOR BRAIN-COMPUTER INTERFACE RESEARCH
BCI2000:脑机接口研究软件
- 批准号:
7123285 - 财政年份:2006
- 资助金额:
$ 25.48万 - 项目类别:
BCI2000: SOFTWARE FOR BRAIN-COMPUTER INTERFACE RESEARCH
BCI2000:脑机接口研究软件
- 批准号:
7642471 - 财政年份:2006
- 资助金额:
$ 25.48万 - 项目类别:
BCI2000: SOFTWARE FOR BRAIN-COMPUTER INTERFACE RESEARCH
BCI2000:脑机接口研究软件
- 批准号:
7454409 - 财政年份:2006
- 资助金额:
$ 25.48万 - 项目类别:
BCI2000: SOFTWARE FOR BRAIN-COMPUTER INTERFACE RESEARCH
BCI2000:脑机接口研究软件
- 批准号:
7279774 - 财政年份:2006
- 资助金额:
$ 25.48万 - 项目类别:
General Purpose Brain-Computer Interface (BCI) System
通用脑机接口(BCI)系统
- 批准号:
8131412 - 财政年份:2002
- 资助金额:
$ 25.48万 - 项目类别:
相似国自然基金
干旱内陆河高含沙河床对季节性河流入渗的影响机制
- 批准号:52379031
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
沿纬度梯度冠层结构多样性变化对森林生产力的影响
- 批准号:32371610
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
开放与二元结构下的中国工业化:对增长与分配的影响机制研究
- 批准号:72373005
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
基于MF和HPLC-ICP-MS监测蛋白冠形成与转化研究稀土掺杂上转换纳米颗粒对凝血平衡的影响机制
- 批准号:82360655
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
高寒草灌植被冠层与根系结构对三维土壤水分动态的影响研究
- 批准号:42301019
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 25.48万 - 项目类别:
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 25.48万 - 项目类别:
Designing novel therapeutics for Alzheimer’s disease using structural studies of tau
利用 tau 蛋白结构研究设计治疗阿尔茨海默病的新疗法
- 批准号:
10678341 - 财政年份:2023
- 资助金额:
$ 25.48万 - 项目类别:
Mechanistic characterization of vaginal microbiome-metabolome associations and metabolite-mediated host inflammation
阴道微生物组-代谢组关联和代谢物介导的宿主炎症的机制特征
- 批准号:
10663410 - 财政年份:2023
- 资助金额:
$ 25.48万 - 项目类别: