Predictive Networks-based in-silico approach for Precision Medicine-repurposing for Alzheimer's Disease

基于预测网络的精密医学方法 - 重新利用阿尔茨海默病

基本信息

  • 批准号:
    10017130
  • 负责人:
  • 金额:
    $ 77.77万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-15 至 2022-06-30
  • 项目状态:
    已结题

项目摘要

Project Summary Alzheimer's disease is the most common form of Dementia estimated to affect 36 million people worldwide. This number is expected to rise to 115 million by 2050 unless an effective therapeutic is developed. Recently, NIA organized large-scale efforts, through AMP-/M2OVE-AD consortia, has generated the richest genotype, genomic and clinical data, which enabled an unprecedented opportunity to explore the enormous complexity of AD pathogenesis. On the other hand, through all failed clinic trials, we learned that an efficacious treatment would need to target multiple aspects of the disease and be directed towards several pathogenic processes in AD. Moreover, patients with different sex and risk factor will respond differently to the same treatment due to distinct pathological mechanisms, therefore, it became extremely critical to develop patient-specific therapeutic targets and precision medicine for each patient sub-group. However, despite tremendous interests in advancing therapy and drug development for AD, there is a paucity of advanced bioinformatics approaches available to guide the effective and efficient development of drugs and de-risk investment in these expensive therapeutic approaches. We respond to the PAR (PAR-17-032) with the goals 1) to apply novel computational systems biology approach, i.e. top-down and bottom-up predictive network for short), to analyze the existing rich genetics, genomics, proteomics, metabolomics, and clinical datasets in AMP-AD and other datasets in AD and 2) to build network models and to predict therapeutic targets of single-cell type and multi-cell cross-talk pathways contributing to the onset and progression of AD pathology; 3) to stratify patients into sub-groups according to Sex, APOE and disease-stage (whenever clinical data available) and to predict therapeutic targets for each sub-group of patients towards precision medicine (drug repurposing) in AD; 4) to use novel in- silico prediction pipeline to prioritize therapeutic targets; 5) to repurpose FDA-approved, investigational, and experimental drugs binding to prioritized therapeutic targets through (known) on-targets and/or (predicted by docking) off-targets; 6) to in-silico evaluate repurposed drugs: efficacy, toxicity, mechanism, transability through BBB; 7) to evaluate prioritized drug/combination using in-vitro and in-vivo AD models.
项目摘要 阿尔茨海默氏病是最常见的痴呆症形式,估计会影响全球3600万人。 除非开发出有效的治疗性,否则预计到2050年,该数字将增加到1.15亿。最近, NIA通过AMP-/M2OVE-AD联盟组织了大规模的努力,它产生了最富有的基因型,即 基因组和临床数据,这使一个前所未有的机会探索了巨大的复杂性 AD发病机理。另一方面,通过所有失败的诊所试验,我们了解到有效的治疗 需要针对疾病的多个方面,并针对多个致病过程 广告。此外,由于性别和危险因素不同的患者对同一治疗的反应将有所不同 因此,不同的病理机制,开发患者特异性治疗变得极为至关重要 每个患者子组的靶标和精度药物。然而,尽管对 推进AD的疗法和药物开发,很少有先进的生物信息学方法 可用于指导药物的有效开发和在这些昂贵的 治疗方法。我们对目标(第17-032杆)的响应(目标)1)应用新颖的计算 系统生物学方法,即自上而下和自下而上的预测网络,以分析现有 AMP-AD和其他数据集中的丰富遗传学,基因组学,蛋白质组学,代谢组学和临床数据集 2)建立网络模型并预测单细胞类型和多细胞串扰的治疗目标 有助于AD病理的发作和进展的途径; 3)将患者分为子组 根据性别,APOE和疾病阶段(每当可用的临床数据)并预测治疗 AD中每个患者每个子组的靶标(药物重新利用); 4)使用新颖 计算机预测管道以优先考虑治疗靶标; 5)重新利用FDA批准,研究和 实验药物通过(已知)靶向和/或(通过 docking)脱靶; 6)硅内评估重新利用的药物:疗效,毒性,机制,可移植性 通过BBB; 7)使用体内和体内AD模型评估优先的药物/组合。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rui Chang其他文献

Rui Chang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rui Chang', 18)}}的其他基金

Applying pathomics to establish a biosignature for aggressive skin melanoma
应用病理学建立侵袭性皮肤黑色素瘤的生物特征
  • 批准号:
    10545113
  • 财政年份:
    2021
  • 资助金额:
    $ 77.77万
  • 项目类别:
Applying pathomics to establish a biosignature for aggressive skin melanoma.
应用病理学建立侵袭性皮肤黑色素瘤的生物特征。
  • 批准号:
    10214049
  • 财政年份:
    2021
  • 资助金额:
    $ 77.77万
  • 项目类别:
Applying pathomics to establish a biosignature for aggressive skin melanoma
应用病理学建立侵袭性皮肤黑色素瘤的生物特征
  • 批准号:
    10397612
  • 财政年份:
    2021
  • 资助金额:
    $ 77.77万
  • 项目类别:
Building Novel Predictive Networks for high-throughput, in-silico Key Driver Prioritization to Enhance Drug Target Discovery in AMP-AD and M2OVE-AD
构建新型预测网络以实现高通量、计算机内关键驱动程序优先级排序,以增强 AMP-AD 和 M2OVE-AD 中的药物靶标发现
  • 批准号:
    9423217
  • 财政年份:
    2017
  • 资助金额:
    $ 77.77万
  • 项目类别:

相似海外基金

Characterizing Entorhinal Cortex Circuit Dysfunction in an APOE Mouse Model of Chemotherapy-Induced Cognitive Impairment
化疗引起认知障碍的 APOE 小鼠模型中内嗅皮层回路功能障碍的特征
  • 批准号:
    10677984
  • 财政年份:
    2023
  • 资助金额:
    $ 77.77万
  • 项目类别:
Healthcare use among older adults with dementia after large-scale disasters
大规模灾难后患有痴呆症的老年人的医疗保健使用情况
  • 批准号:
    10591812
  • 财政年份:
    2023
  • 资助金额:
    $ 77.77万
  • 项目类别:
Extratumoral biological determinants that decrease survival in older adults with glioblastoma
降低老年胶质母细胞瘤患者生存率的肿瘤外生物决定因素
  • 批准号:
    10741380
  • 财政年份:
    2023
  • 资助金额:
    $ 77.77万
  • 项目类别:
Neural Circuits, Kinetics and Energetics HTS of Human iPSC-Neurons, -Microglia, and -Astrocytes: AI-Enabled Platform for Target ID, and Drug Discovery and Toxicity (e.g., Cancer Chemo & HIV ARTs)
人类 iPSC 神经元、小胶质细胞和星形胶质细胞的神经回路、动力学和能量 HTS:用于目标 ID、药物发现和毒性(例如癌症化疗)的 AI 平台
  • 批准号:
    10707866
  • 财政年份:
    2023
  • 资助金额:
    $ 77.77万
  • 项目类别:
Microbiota-targeted approaches to resolve dysbiosis-induced AD neuropathology following brain injury.
以微生物群为目标的方法来解决脑损伤后生态失调引起的 AD 神经病理学问题。
  • 批准号:
    10910348
  • 财政年份:
    2023
  • 资助金额:
    $ 77.77万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了