Applying pathomics to establish a biosignature for aggressive skin melanoma.
应用病理学建立侵袭性皮肤黑色素瘤的生物特征。
基本信息
- 批准号:10214049
- 负责人:
- 金额:$ 69.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2021-10-04
- 项目状态:已结题
- 来源:
- 关键词:Academic Medical CentersAdjuvantAdjuvant StudyAdjuvant TherapyArtificial IntelligenceBayesian NetworkBiological MarkersBritish ColumbiaCD8B1 geneCellsCessation of lifeClinicalClinical DataClinical PathologyClinical ProtocolsComputer Vision SystemsComputer softwareCutaneousCutaneous MelanomaDNA Sequence AlterationDataDevelopmentElementsExposure toFluorescenceFormalinGene ExpressionGenesGenomic approachGenomicsGrowthHealth Care CostsHealth systemHematoxylin and Eosin Staining MethodImageImage AnalysisImmuneImmune systemImmunityImmunologic MarkersImmunologic SurveillanceIndividualInstitutesInstitutionInterferonsInterobserver VariabilityLocationMachine LearningMalignant NeoplasmsMeasurementMedical centerMessenger RNAMethodsModelingMolecularMolecular ComputationsMorphologyNuclearOperative Surgical ProceduresOutcomeParaffin EmbeddingPathologistPathologyPathway AnalysisPatient CarePatient TriagePatientsPhenotypePositioning AttributePrognosisPrognostic MarkerPublishingRNARecurrenceReproducibilityRetrospective StudiesRiskRoleRoswell Park Cancer InstituteSamplingSelection BiasSkinSpatial DistributionSpeedStagingStainsStandardizationSystems BiologyT-LymphocyteTechnologyTestingTissue EmbeddingTissuesToxic effectTreatment-related toxicityTumor-Infiltrating LymphocytesTumor-infiltrating immune cellsUniversitiesUpdatebasebiosignatureclinical applicationclinical carecohortcomputerized toolscostdigitaldigital imagingdigital pathologydisorder riskfollow-upgenomic datahigh riskimprovedmacrophagemedical schoolsmelanomamortality riskmulti-scale modelingnano-stringnetwork modelsprospectivequantitative imagingtranscriptometranscriptomicstumortumor growthtumor microenvironmenttumor progressiontumor-immune system interactions
项目摘要
PROJECT SUMMARY
We propose to develop a pathomics biosignature for aggressive melanoma to guide treatment decisions for
patients who have had a melanoma surgically removed but remain at high risk of recurrence and death. This is
a critical need because patients with stage II and III melanoma have an approximate 30% chance of dying of
melanoma over 10 years. Therapies have been shown to lessen recurrence risk, but they are toxic and costly.
Identifying patients who have truly been cured by the surgery and are cancer free would be tremendously useful
to guide patient care. It has been known for decades that the immune system limits melanoma progression and
that higher levels of tumor infiltrating lymphocytes (TILs) portend a favorable outcome. Assessment of TILs,
however, involves a subjective determination by the pathologist using qualitative criteria and this approach is
prone to inter-observer variability. One barrier to the development of prognostic biomarkers in early stage
melanoma is that the tumors are tiny and most dermato-pathologists require that the entire sample be formalin
fixed and paraffin embedded (FFPE) for careful morphology analysis. In order to overcome this barrier, our team
has developed and published three digital pathology methods to estimate recurrence risk. These biomarkers are
based on the hypothesis that evidence of strong immune surveillance within the tissue indicates lower recurrence
risk and include quantitation of TILs using digital software, staining for macrophages and T cells using
quantitative- immune-fluorescence (qIF), and measurement of an interferon signature using NanoString
technology. Each of these methods provides unique information about the tumor immune micro-environment.
For example, NanoString provides genomic information but does not provide spatial information regarding the
locations of specific cell phenotypes within the tumor microenvironment as qIF does. For instance, qIF revealed
the macrophages confer a poor prognosis specifically when located within the tumor stroma. In Aim 1 of the
proposal we validate three previously published biomarkers using 514 melanoma samples from Roswell
Park Comprehensive Cancer Institute, The University of British Columbia, Yale School of Medicine, and
Geisinger Health Systems. Next, in Aim 2 of the proposal we propose an integrative systems biology approach
including transcriptomic, qIF, morphology analysis of TILS, and standard clinical and pathology features to
create a multi-parameter biosignature. First, we use the raw clinical and pathomics data to build a model
multiscale biomarker network of aggressive skin melanoma. Using a Bayesian network, we identify nodes that
determine the recurrence phenotype and identify new imaging and genomic targets that may enhance the
precision of our biomarker. We then construct a composite biosignature based on this network. Finally, we test
the new biosignature, as well as the original multiply validated biomarkers from Aim 1 in prospective retrospective
fashion on samples from the E1697 trial of adjuvant interferon for which there is over 10 years of follow up. The
retrospective prospective approach removes any selection bias introduced by retrospective study.
项目摘要
我们建议为侵略性黑色素瘤开发一种致病性生物签名,以指导治疗决策
患有外科手术的黑色素瘤的患者仍处于复发和死亡的高风险。这是
急需需求,因为患有II期和III期黑色素瘤的患者死于约30%
黑色素瘤超过10年。疗法已被证明会降低复发风险,但它们具有毒性和昂贵。
识别真正通过手术治愈并无癌的患者将非常有用
指导患者护理。几十年来,免疫系统限制了黑色素瘤的进展和
较高水平的肿瘤浸润淋巴细胞(TILS)预示了有利的结果。评估tils,
但是,使用定性标准涉及病理学家的主观确定,这种方法是
容易出现观察者间的变异性。早期预后生物标志物发展的一个障碍
黑色素瘤是肿瘤很小,大多数皮肤病学家都要求整个样品都是福尔马林
固定和石蜡嵌入(FFPE)进行仔细的形态分析。为了克服这一障碍,我们的团队
已经开发并发表了三种数字病理学方法来估计复发风险。这些生物标志物是
基于以下假设:组织内强烈免疫监测的证据表明复发较低
风险并包括使用数字软件对TIL进行定量,使用数字软件染色
定量免疫荧光(QIF),并使用纳米串来测量干扰素特征
技术。这些方法中的每一种都提供了有关肿瘤免疫微环境的独特信息。
例如,纳米串提供了基因组信息,但没有提供有关该信息的空间信息
像QIF一样,肿瘤微环境中特定细胞表型的位置。例如,Qif揭示了
巨噬细胞在肿瘤基质内时特别赋予了较差的预后。在目标1中
提案我们使用罗斯威尔(Roswell)的514个黑色素瘤样品验证了三个先前发表的生物标志物
公园综合癌症研究所,不列颠哥伦比亚大学,耶鲁大学医学院和
Geisinger Health Systems。接下来,在提案的目标2中,我们提出了一种综合系统生物学方法
包括转录组,QIF,TIL的形态分析以及标准的临床和病理特征
创建一个多参数生物签名。首先,我们使用原始的临床和病原体数据来构建模型
侵略性皮肤黑色素瘤的多尺度生物标志物网络。使用贝叶斯网络,我们识别节点
确定复发表型并确定可能增强的新成像和基因组靶标
我们生物标志物的精度。然后,我们基于此网络构建一个复合生物签名。最后,我们测试
新的生物签名以及原始的倍数验证的生物标志物,来自AIM 1的潜在回顾
E1697辅助干扰素试验的样品中的时尚,有10年的随访。这
回顾性前瞻性方法消除了回顾性研究引入的任何选择偏差。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rui Chang其他文献
Rui Chang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rui Chang', 18)}}的其他基金
Applying pathomics to establish a biosignature for aggressive skin melanoma
应用病理学建立侵袭性皮肤黑色素瘤的生物特征
- 批准号:
10545113 - 财政年份:2021
- 资助金额:
$ 69.35万 - 项目类别:
Applying pathomics to establish a biosignature for aggressive skin melanoma
应用病理学建立侵袭性皮肤黑色素瘤的生物特征
- 批准号:
10397612 - 财政年份:2021
- 资助金额:
$ 69.35万 - 项目类别:
Predictive Networks-based in-silico approach for Precision Medicine-repurposing for Alzheimer's Disease
基于预测网络的精密医学方法 - 重新利用阿尔茨海默病
- 批准号:
10017130 - 财政年份:2019
- 资助金额:
$ 69.35万 - 项目类别:
Building Novel Predictive Networks for high-throughput, in-silico Key Driver Prioritization to Enhance Drug Target Discovery in AMP-AD and M2OVE-AD
构建新型预测网络以实现高通量、计算机内关键驱动程序优先级排序,以增强 AMP-AD 和 M2OVE-AD 中的药物靶标发现
- 批准号:
9423217 - 财政年份:2017
- 资助金额:
$ 69.35万 - 项目类别:
相似国自然基金
穿透性靶向胰腺癌内cDC1的纳米佐剂调控溶酶体逃逸促进放疗诱导ICD的机制研究
- 批准号:82303680
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多级改造的工程化外泌体自佐剂疫苗平台实现鼻上皮细胞感染拟态和粘膜递送的研究
- 批准号:32371440
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
展示PD-L1抗体的纳米锰佐剂联合放疗以诱导原位肿瘤疫苗的产生及其机制的探究
- 批准号:32371518
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
靶向FPPS的双磷酸疫苗佐剂的开发
- 批准号:82341040
- 批准年份:2023
- 资助金额:100 万元
- 项目类别:专项基金项目
应用于冠状病毒广谱疫苗开发的新型全链式免疫增强型佐剂研究
- 批准号:82341036
- 批准年份:2023
- 资助金额:110 万元
- 项目类别:专项基金项目
相似海外基金
Vaccinating at Mucosal Surfaces with Nanoparticle-conjugated Antigen and Adjuvant
使用纳米颗粒结合的抗原和佐剂在粘膜表面进行疫苗接种
- 批准号:
10587388 - 财政年份:2023
- 资助金额:
$ 69.35万 - 项目类别:
Validation of blood-based predictive biomarkers of therapeutic response to neoadjuvant chemoradiation therapy in patients with locally advanced rectal cancer
局部晚期直肠癌患者新辅助放化疗治疗反应的血液预测生物标志物的验证
- 批准号:
10448869 - 财政年份:2022
- 资助金额:
$ 69.35万 - 项目类别:
Validation of blood-based predictive biomarkers of therapeutic response to neoadjuvant chemoradiation therapy in patients with locally advanced rectal cancer
局部晚期直肠癌患者新辅助放化疗治疗反应的血液预测生物标志物的验证
- 批准号:
10615862 - 财政年份:2022
- 资助金额:
$ 69.35万 - 项目类别:
Applying pathomics to establish a biosignature for aggressive skin melanoma
应用病理学建立侵袭性皮肤黑色素瘤的生物特征
- 批准号:
10545113 - 财政年份:2021
- 资助金额:
$ 69.35万 - 项目类别:
Applying pathomics to establish a biosignature for aggressive skin melanoma
应用病理学建立侵袭性皮肤黑色素瘤的生物特征
- 批准号:
10397612 - 财政年份:2021
- 资助金额:
$ 69.35万 - 项目类别: