Building Novel Predictive Networks for high-throughput, in-silico Key Driver Prioritization to Enhance Drug Target Discovery in AMP-AD and M2OVE-AD
构建新型预测网络以实现高通量、计算机内关键驱动程序优先级排序,以增强 AMP-AD 和 M2OVE-AD 中的药物靶标发现
基本信息
- 批准号:9423217
- 负责人:
- 金额:$ 21.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-15 至 2018-03-15
- 项目状态:已结题
- 来源:
- 关键词:AffectAlzheimer disease preventionAlzheimer&aposs DiseaseAlzheimer&aposs disease modelAnimal ModelAstrocytesBrainCell modelCellsCollaborationsComputer SimulationDataData SetDementiaDevelopmentDiseaseDrug TargetingGene ExpressionGene ProteinsGenesGoalsHeterogeneityHumanLearningMetabolicMicrogliaMolecularMolecular ProfilingNetwork-basedNeuronsOligodendrogliaPathway interactionsPhenotypeProteomicsRecipeReproducibilityTherapeuticTissuesTreatment EfficacyUpdateValidationcell typecombinatorialdrug developmentexperimental studyimprovedinduced pluripotent stem cellmolecular phenotypemonocytemulti-scale modelingmultidisciplinarynetwork modelsnew therapeutic targetnovelnovel therapeuticsopen datapre-clinicalprogramsprotein metabolitescreeningsmall hairpin RNAsuccesstherapeutic targettherapy developmenttranscriptome sequencing
项目摘要
Project Summary
We respond to the RFA (AG-17-054) with the goals of 1) applying new computational approaches, i.e. top-
down and bottom-up predictive network (predictive network for short) to the existing rich datasets generated by
the AMP-AD and M2OVE-AD consortia to discover novel targets that can guide therapy development; 2)
performing experimental validation of the novel targets using human cellular models and generating RNA-seq
data to systematically validate in-silico prediction; 3) integrating the new RNA-seq data to further improve the
predictive network built on existing AMP-AD data and to enhance the quality of the targets. Alzheimer's
disease is the most common form of Dementia estimated to affect 36 million people worldwide. This number is
expected to rise to 115 million by 2050 unless an effective therapeutic is developed. The AMP-AD Target
Discovery and Preclinical Validation and M2OVE-AD programs are large-scale, open science consortia aimed
at building a predictive, multi-scale model of AD that better reflects its heterogeneity and at discovering the
next-generation therapeutic targets through integrative, data-driven approaches. While the four multi-
institutional, multidisciplinary teams in AMP-AD engaged cutting-edge and agnostic analysis efforts to
reconstruct the molecular network of the gene, protein, and metabolite in AD and to discover novel therapeutic
targets evaluated by multiple model organisms, the reproducibility of the drug targets proposed across all
teams is low (1 replicate out of total 80 targets proposed in Sept. 2016) given the considerable complexity of
the disease and differences that exist in the data types and the approaches used to generate and analyze the
data. This variability undermined the confidence of each candidate target and defocused the efforts of
experiment validation. Current key driver screening lacks a high-throughput, in-silico screening component to
directly evaluate the efficacy of a target by predicting the downstream molecular phenotype given its
perturbation. This gap between target discovery and validation further reduces the overall rate of success,
efficacy and efficiency of drug development. In this proposal, we will apply the predictive network pipeline with
the in-silico screening component to existing data in AMP-AD in collaboration with all teams in AMP-AD and
M2OVE-AD to build causal and predictive networks and to identify and prioritize key drivers, which will be
evaluated by experiment validation. The RNA-seq data generated by experiment validation will be used to
systematically evaluate the in-silico phenotypic prediction to determine the confidence of proposed therapeutic
recipes and to be integrated with the existing predictive networks to enhance drug target discovery.
项目摘要
我们对RFA(AG-17-054)做出了回应,其目标是1)采用新的计算方法,即顶级
向下和自下而上的预测网络(简称预测网络)到由现有的丰富数据集生成
AMP-AD和M2OVE-AD联盟发现可以指导治疗发展的新目标; 2)
使用人类细胞模型对新目标进行实验验证并产生RNA-Seq
数据以系统地验证核内预测; 3)整合新的RNA-seq数据以进一步改善
预测网络基于现有的AMP-AD数据并提高目标质量。阿尔茨海默氏症
疾病是估计影响全球3600万人的最常见痴呆症形式。这个数字是
除非开发有效的治疗性,否则预计到2050年将上升到1.15亿。 AMP-AD目标
发现和临床前验证以及M2OVE-AD计划是针对大规模的开放科学联盟
在建立一个预测性的多尺度AD模型时,可以更好地反映其异质性并发现
下一代治疗靶标通过集成,数据驱动的方法。而四个多
在AMP-AD参与尖端和不可知论分析的机构多学科团队中
在AD中重建基因,蛋白质和代谢物的分子网络,并发现新型治疗
通过多种模型生物评估的靶标,所有在所有模型生物中提出的药物靶标的可重复性
鉴于相当复杂的复杂性
数据类型中存在的疾病和差异以及用于生成和分析的方法
数据。这种可变性破坏了每个候选目标的信心,并宣传了
实验验证。当前的关键驱动程序筛查缺乏高通量的,内部的筛选组件
直接通过预测下游分子表型来直接评估目标的疗效
扰动。目标发现与验证之间的差距进一步降低了成功的总体成功率,
药物开发的功效和效率。在此提案中,我们将使用预测网络管道
与AMP-AD和AMP-AD和
m2ove-ad建立因果和预测网络并确定和确定关键驱动因素的优先级,这将是
通过实验验证评估。实验验证生成的RNA-seq数据将用于
系统地评估Silico表型预测,以确定所提出的治疗的置信度
食谱并与现有的预测网络集成,以增强药物靶标的发现。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rui Chang其他文献
Rui Chang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rui Chang', 18)}}的其他基金
Applying pathomics to establish a biosignature for aggressive skin melanoma
应用病理学建立侵袭性皮肤黑色素瘤的生物特征
- 批准号:
10545113 - 财政年份:2021
- 资助金额:
$ 21.85万 - 项目类别:
Applying pathomics to establish a biosignature for aggressive skin melanoma.
应用病理学建立侵袭性皮肤黑色素瘤的生物特征。
- 批准号:
10214049 - 财政年份:2021
- 资助金额:
$ 21.85万 - 项目类别:
Applying pathomics to establish a biosignature for aggressive skin melanoma
应用病理学建立侵袭性皮肤黑色素瘤的生物特征
- 批准号:
10397612 - 财政年份:2021
- 资助金额:
$ 21.85万 - 项目类别:
Predictive Networks-based in-silico approach for Precision Medicine-repurposing for Alzheimer's Disease
基于预测网络的精密医学方法 - 重新利用阿尔茨海默病
- 批准号:
10017130 - 财政年份:2019
- 资助金额:
$ 21.85万 - 项目类别:
相似国自然基金
运动预防阿尔茨海默病的脑脊液关键因子及其“损伤-修复”机制研究
- 批准号:32300959
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
长期有氧运动预防阿尔茨海默病的OPCs衰老机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
游泳训练预防阿尔茨海默病的线粒体机制研究
- 批准号:31871205
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Nursing homes' visitation bans during the COVID-19 pandemic: Effectiveness and consequences.
COVID-19 大流行期间疗养院的探视禁令:有效性和后果。
- 批准号:
10635829 - 财政年份:2023
- 资助金额:
$ 21.85万 - 项目类别:
Immunomodulatory ligand B7-1 targets p75 neurotrophin receptor in neurodegeneration
免疫调节配体 B7-1 在神经变性中靶向 p75 神经营养蛋白受体
- 批准号:
10660332 - 财政年份:2023
- 资助金额:
$ 21.85万 - 项目类别:
Innovative Chair to Prevent Pressure Injuries in Persons Living with Alzheimer's Disease and Related Dementias
预防阿尔茨海默病和相关痴呆症患者压力损伤的创新椅子
- 批准号:
10760048 - 财政年份:2023
- 资助金额:
$ 21.85万 - 项目类别:
Towards the understanding of how chaperones function and prevent amyloidogenic diseases
了解伴侣如何发挥作用并预防淀粉样蛋白形成疾病
- 批准号:
10734397 - 财政年份:2023
- 资助金额:
$ 21.85万 - 项目类别:
Nuestro Sueno: Cultural Adaptation of a Couples Intervention to Improve PAP Adherence and Sleep Health Among Latino Couples with Implications for Alzheimer’s Disease Risk
Nuestro Sueno:夫妻干预措施的文化适应,以改善拉丁裔夫妇的 PAP 依从性和睡眠健康,对阿尔茨海默病风险产生影响
- 批准号:
10766947 - 财政年份:2023
- 资助金额:
$ 21.85万 - 项目类别: