Ultra-flexible Carbon Nanotube Yarn Electrodes that Integrate with Brain
与大脑集成的超柔性碳纳米管纱线电极
基本信息
- 批准号:7651155
- 负责人:
- 金额:$ 17.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-07-10 至 2011-06-30
- 项目状态:已结题
- 来源:
- 关键词:Action PotentialsActive SitesAnimalsAreaAthleticBiocompatibleBlindnessBlood flowBrainBrain PartCarbonCephalicChargeChemicalsChronicClassificationCommunicationComputer softwareContractsContralateralElectrodesElectrolytesFailureFosteringFoundationsHeadHistologyHuntington DiseaseHydration statusImplantIridiumKnowledgeLaboratoriesLengthLinkMechanicsMedical ResearchMicroelectrodesMovementNeuraxisNeuronsPhasePhysiologic pulsePhysiologicalPhysiologyPlant RootsPolymersProsthesisRelative (related person)ResearchResearch InstituteResearch PersonnelResidual stateResistanceRunningSignal TransductionSiteSneezingSourceSpinal cord injuryStructureSurfaceSystemTechniquesTechnologyTestingTissuesTraumaUnited States National Institutes of HealthVibrissaeWorkbasebiomaterial compatibilitybrain tissueclinical applicationcommercializationcomparativecraniumdesignelectric impedanceexperienceflexibilityimplantationinterestinterfacialliquid crystal polymerpressureprogramsprototypereceptorrelating to nervous system
项目摘要
DESCRIPTION (provided by applicant): For the past 30 years, there has been extensive interest in developing a communication link between electronically controlled machines and the central nervous system for neuroprosthetics for spinal cord injury, blindness, prosthetic control and many other applications. However, all current applications of chronic neural interface technology are substantially hampered by lack of functional stability in the neural interface, possibly due to the mechanics of the stiff and tethered implants relative to the soft and dynamic brain. There are three dominant sources of mechanical mismatch the interconnects, the interconnect-electrode superstructure, and the electrodes themselves. Mechanical mismatch is a widely recognized shortcoming of the existing technology that this proposed program will largely overcome by creating a chronically implantable, thin, polymer based elastic thread-like interconnect technology that will integrate with the brain surface, and will access neurons of interest through flexible, threadlike electrodes with small but low impedance active sites. The objective of the proposed work is to develop a new cortical neural interface technology that physically and permanently integrates with the pia and cortex and that: 1) maintains long term physiological stability with specific target neurons; 2) are rugged and reliable for many decades; 3) can be readily atraumatically implanted; 3) utilizes advanced, non-fouling, low impedance/high charge capacity capacitive electrode material; and 4) could support economical rapid turn-around prototype runs of investigator generated designs. The feasibility of achieving this objective will be quantitatively assessed over the course of one year by an intense collaborative effort with Foster-Miller, Inc and InnerSea Technology, Inc. Physiological stability will be directly tested using a cortical barrel receptor (whisker) paradigm and automated action potential classification software. In addition, one of the most experienced quantitative histology laboratories in the world, Huntington Medical Research Institute, will provide independent, objective comparative histological analysis of the implanted tissues vs the extensively studied Iridium shaft electrode arrays that they have developed. Following the completion of this proposed Phase I work, the following will have been accomplished: 1) candidate tissue integrative electrode designs will have been identified and verified with mechanical testing (bench); 2) insertion techniques for these will have been developed and evaluated (bench and animals); 3) electrochemical and electrical parameters of the final electrode contacts will have been thoroughly documented (bench and animals); 4) preliminary testing of the physiological stability of the implant system relative to target neurons will have been completed and compared to similar testing in the contralateral cortex using Iridium arrays; and 5) initial objective quantitative assessment of the biocompatibility of the system will be complete. Phase II will begin limited commercialization for neuroprosthetics and other research, confirmation of biocompatibility and bioresistance, and testing of clinical applications in spinal cord injury.
描述(由申请人提供):在过去的 30 年里,人们对开发电子控制机器和中枢神经系统之间的通信链路产生了广泛的兴趣,以用于脊髓损伤、失明、假肢控制和许多其他应用的神经假体。然而,目前慢性神经接口技术的所有应用都因神经接口缺乏功能稳定性而受到严重阻碍,这可能是由于相对于柔软且动态的大脑而言,僵硬且系绳的植入物的力学原理所致。机械失配的三个主要来源是互连、互连电极上部结构和电极本身。机械失配是现有技术的一个广泛认可的缺点,该计划将通过创建一种长期可植入的、薄的、基于聚合物的弹性线状互连技术来很大程度上克服这一缺点,该技术将与大脑表面集成,并通过灵活的方式访问感兴趣的神经元。 ,具有小但低阻抗活性位点的线状电极。拟议工作的目标是开发一种新的皮质神经接口技术,该技术可与软脑膜和皮质永久地物理整合,并且:1)与特定目标神经元保持长期生理稳定性; 2) 几十年来坚固可靠; 3) 可以容易地无创伤地植入; 3)采用先进、不结垢、低阻抗/高充电能力的电容电极材料; 4) 可以支持研究者生成的设计的经济快速周转原型运行。通过与 Foster-Miller, Inc 和 InnerSea Technology, Inc. 的密切合作,将在一年的时间内对实现这一目标的可行性进行定量评估。生理稳定性将使用皮质桶受体(晶须)范式直接测试,并自动进行动作电位分类软件。此外,世界上最有经验的定量组织学实验室之一亨廷顿医学研究所将对植入组织与他们开发的经过广泛研究的铱轴电极阵列进行独立、客观的比较组织学分析。完成拟议的第一阶段工作后,将完成以下工作:1)将通过机械测试(台架)确定和验证候选组织集成电极设计; 2) 已开发并评估了这些遗嘱的插入技术(工作台和动物); 3) 最终电极接触的电化学和电气参数将被彻底记录(工作台和动物); 4) 将完成植入系统相对于目标神经元的生理稳定性的初步测试,并与使用铱阵列在对侧皮质中进行的类似测试进行比较; 5) 系统生物相容性的初步客观定量评估将完成。第二阶段将开始神经修复术和其他研究的有限商业化、生物相容性和生物抵抗性的确认以及脊髓损伤临床应用的测试。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DAVID J EDELL其他文献
DAVID J EDELL的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DAVID J EDELL', 18)}}的其他基金
Ultra-flexible Carbon Nanotube Yarn Electrodes that Integrate with Brain
与大脑集成的超柔性碳纳米管纱线电极
- 批准号:
7391363 - 财政年份:2008
- 资助金额:
$ 17.93万 - 项目类别:
Ultra-low-power wireless implant stimulator for prosthesis sensory feedback
用于假体感觉反馈的超低功耗无线植入刺激器
- 批准号:
7167163 - 财政年份:2006
- 资助金额:
$ 17.93万 - 项目类别:
PhysioTelemeter for Autonomic Monitoring
用于自主监测的 PhysioTelemeter
- 批准号:
6963693 - 财政年份:2005
- 资助金额:
$ 17.93万 - 项目类别:
Liquid Crystal Polymer Substrate IntraCochlear Electrode
液晶聚合物基底耳蜗内电极
- 批准号:
6585330 - 财政年份:2003
- 资助金额:
$ 17.93万 - 项目类别:
Development of an Implantable EMG Micro-Telemeter
植入式肌电图微型遥测仪的开发
- 批准号:
7127716 - 财政年份:1999
- 资助金额:
$ 17.93万 - 项目类别:
相似海外基金
Optimization of Flexible Neural Probe Arrays for Multi-Region Recordings in Rodents and Nonhuman Primates
用于啮齿动物和非人类灵长类动物多区域记录的柔性神经探针阵列的优化
- 批准号:
10401221 - 财政年份:2022
- 资助金额:
$ 17.93万 - 项目类别:
Design and Validation of the Utah Multisite Electrode Array (UMEA)
犹他多点电极阵列 (UMEA) 的设计和验证
- 批准号:
8997542 - 财政年份:2014
- 资助金额:
$ 17.93万 - 项目类别:
Design and Validation of the Utah Multisite Electrode Array (UMEA)
犹他多点电极阵列 (UMEA) 的设计和验证
- 批准号:
8720477 - 财政年份:2014
- 资助金额:
$ 17.93万 - 项目类别:
Target Mycobacterium Protein Tyrosine Phosphatase B for Anti-Tuberculosis Agents
用于抗结核药物的靶分枝杆菌蛋白酪氨酸磷酸酶 B
- 批准号:
8089759 - 财政年份:2010
- 资助金额:
$ 17.93万 - 项目类别:
Cortical mechanisms and functional role of slow sleep oscillations
慢睡眠振荡的皮质机制和功能作用
- 批准号:
8119074 - 财政年份:2008
- 资助金额:
$ 17.93万 - 项目类别: