Combined Intravascular Ultrasound and Photoacoustic Imaging of Atherosclerosis
动脉粥样硬化血管内超声和光声成像相结合
基本信息
- 批准号:7932879
- 负责人:
- 金额:$ 70万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-30 至 2012-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAblationAccountingAcousticsAddressAlgorithmsAnimal ModelAnimalsAntibodiesArterial Fatty StreakAtherosclerosisBackBalloon AngioplastyBindingBiological MarkersBiomedical EngineeringBook ChaptersBrachytherapyCardiologyCardiovascular Surgical ProceduresCathetersCause of DeathCell Culture TechniquesCellsCessation of lifeCharacteristicsClinicalClinical EngineeringClinical ResearchCollectionColorComputer Systems DevelopmentComputer softwareContrast MediaCoronary arteryCoronary heart diseaseCouplingCustomD CellsDetectionDevelopmentDextransDiagnosisDiagnostic ProcedureDiseaseElementsEndothelial CellsEvaluationEventExploratory/Developmental Grant for Diagnostic Cancer ImagingFrequenciesGoalsGoldGray unit of radiation doseHumanImageImaging DeviceImaging PhantomsImaging TechniquesImaging technologyImmuneInfiltrationIntegrinsInternationalInterventionInvestigationKnowledgeLabelLasersLifeLightLightingLipidsLiving ArrangementLocationManuscriptsMeasuresMediatingMicroscopyModalityModelingMolecularMolecular TargetMonoclonal AntibodiesNamesNanotechnologyOpticsOryctolagus cuniculusOutcomePaperPathologicPatientsPenetrationPerformancePeripheral Vascular DiseasesPhotobleachingPhysiologic pulsePrincipal InvestigatorPropertyProtocols documentationPublicationsResearchResearch PersonnelResearch Project GrantsResectedResolutionRuptureScreening procedureShoulderSignal TransductionSlideSocietiesSourceSpecimenStagingStrokeStructureSuspension substanceSuspensionsSymptomsSystemTechniquesTechnologyTestingTimeTissue SampleTissuesTransducersUltrasonographyUnited StatesUniversity of Texas M D Anderson Cancer CenterVesicleVisible RadiationWorkabsorptionacute coronary syndromeangiogenesisaustinbasebioimagingbiomaterial compatibilitydesigndextranexperiencehuman tissueimage processingimprovedin vivoinsightinstrumentationlecturesmacrophagememberminimally invasivemolecular imagingnanoparticlenanosensorsnoveloptical fiberperformance testsplasmonicspost interventionpreclinical studyprofessorprogramsprototypepublic health relevanceskillssymposiumtissue culturetissue phantomtoolvaporization
项目摘要
DESCRIPTION (provided by applicant): In the United States alone, approximately 500,000 deaths will result from rupture of plaques considered "insignificant" on an angiographic evaluation. Available screening and diagnostic methods are insufficient to identify possible victims before the event occurs. Therefore, there is a definite and urgent clinical need for an imaging technique that can identify and characterize the vulnerability of atherosclerotic plaques during coronary artery interventions. The overall goal of our research program is to develop an in-vivo imaging technology - combined intravascular ultrasound and photoacoustic imaging - capable of visualizing both structural and functional properties of atherosclerotic plaques. The underlying hypothesis of this project is that intravascular photoacoustic (IVPA) imaging combined with intravascular ultrasound (IVUS) imaging is possible and can be used to distinguish vulnerable plaques, thus assisting pre-intervention planning, the intervention itself, and improving the post-intervention outcome. Most importantly, the proposed photoacoustic imaging will not significantly change the current protocol of coronary artery intervention. A wide range of scientific and engineering, biomedical and clinical problems must be addressed to fully explore the capabilities of intravascular photoacoustic imaging in interventional cardiology. The central theme of the current project is to develop and test the prototype of the combined IVUS/IVPA in- vivo imaging system prior to extensive clinical studies. Therefore, the main objective of our multi- disciplinary application is to develop an in-vivo, minimally invasive, functional and even molecular specific imaging technology - combined IVUS/IVPA imaging - capable of immediate and accurate assessment of the presence and vulnerability of atherosclerotic plaques at critical stages. To achieve our objective, first we will design and build a prototype of the IVUS/IVPA imaging system based on an available IVUS imaging systems and catheters interfaced with a tunable laser source. Furthermore, we will develop the signal/image processing algorithms and optimize the performance of the system. Second, we will develop a novel molecularly sensitive contrast agent appropriate for the IVUS/IVPA imaging system. Third, we will test the developed IVPA/IVUS imaging technology in tissue-mimicking phantoms, 3-D cell tissue constructs, small animal model of atherosclerosis, and, lastly, excised human tissue. Finally, based on the insights gathered during the project, we will design the intensive animal and clinical studies to demonstrate that the IVUS/IVPA imaging system may become a superior clinical imaging tool needed in interventional cardiology. PUBLIC HEALTH RELEVANCE: Atherosclerotic cardiovascular disease results in more than 19 million deaths annually, and coronary heart disease accounts for the majority of this toll. Despite major advances in treatment of coronary heart disease patients, a large number of victims of the disease who are apparently healthy die suddenly without prior symptoms. Available screening and diagnostic methods are insufficient to identify possible victims before the event occurs - in the United States alone, approximately 500,000 deaths per year will result from rupture of plaques considered "insignificant" on an angiographic evaluation. There is a definite and urgent clinical need for a technique that can a) identify the presence and location of atherosclerotic plaques, b) characterize pathologic features that predict plaque rupture including large lipid collection within the plaque, thinning of the fibrous cap, and infiltration of macrophages at the shoulders of the fibrous cap, and c) guide coronary artery interventions including percutaneous balloon angioplasty, endovascular stenting, ablation/vaporization and brachytherapy. To address this clinical need, we propose to develop an advanced, catheter-based combined ultrasound and photoacoustic imaging technique capable of visualizing functional properties of atherosclerotic plaques. Therefore, the overall goal of our research program is to develop an in-vivo, minimally invasive, functional and even molecular specific imaging technology - combined IVUS/IVPA imaging - capable of immediate and accurate assessment of presence and vulnerability of atherosclerotic plaques at critical stages. A wide range of scientific and engineering, biomedical and clinical problems must be addressed to fully test IVUS/IVPA imaging. The central theme of the current application is threefold: to design and build a prototype of the IVUS/IVPA imaging system, to develop novel molecularly sensitive contrast agent appropriate for IVUS/IVPA imaging system, and to initially test the developed IVPA/IVUS imaging technology in tissue-mimicking phantoms, 3-D cell tissue constructs, small animal model of atherosclerosis, and, finally, excised human tissue. The current study is designed to demonstrate that in-vivo IVUS/IVPA imaging is practical and feasible. At the conclusion of this study and in cooperation with industrial partners, we will be ready to build the clinical IVUS/IVPA imaging system demonstrating the application of developed technology in interventional cardiology.
描述(由申请人提供):仅在美国,大约有 500,000 人因血管造影评估中被认为“无关紧要”的斑块破裂而导致死亡。现有的筛查和诊断方法不足以在事件发生之前识别可能的受害者。因此,临床上迫切需要一种能够识别和表征冠状动脉介入治疗期间动脉粥样硬化斑块脆弱性的成像技术。我们研究项目的总体目标是开发一种体内成像技术——血管内超声和光声成像相结合——能够可视化动脉粥样硬化斑块的结构和功能特性。该项目的基本假设是血管内光声(IVPA)成像与血管内超声(IVUS)成像相结合是可能的,可用于区分易损斑块,从而协助干预前计划、干预本身以及改善干预后的效果结果。最重要的是,所提出的光声成像不会显着改变当前冠状动脉介入治疗的方案。为了充分探索血管内光声成像在介入心脏病学中的能力,必须解决广泛的科学和工程、生物医学和临床问题。当前项目的中心主题是在广泛的临床研究之前开发和测试组合 IVUS/IVPA 体内成像系统的原型。因此,我们多学科应用的主要目标是开发一种体内、微创、功能性甚至分子特异性成像技术 - 组合 IVUS/IVPA 成像 - 能够立即准确地评估动脉粥样硬化斑块的存在和脆弱性在关键阶段。为了实现我们的目标,首先我们将基于可用的 IVUS 成像系统和与可调谐激光源连接的导管来设计和构建 IVUS/IVPA 成像系统的原型。此外,我们将开发信号/图像处理算法并优化系统的性能。其次,我们将开发一种适用于 IVUS/IVPA 成像系统的新型分子敏感造影剂。第三,我们将在组织模拟体模、3D 细胞组织构建体、动脉粥样硬化小动物模型以及最后切除的人体组织中测试已开发的 IVPA/IVUS 成像技术。最后,根据项目期间收集的见解,我们将设计密集的动物和临床研究,以证明 IVUS/IVPA 成像系统可能成为介入心脏病学所需的优质临床成像工具。公共卫生相关性:动脉粥样硬化性心血管疾病每年导致超过 1900 万人死亡,其中冠心病占其中的大部分。尽管冠心病患者的治疗取得了重大进展,但大量表面健康的患者在没有任何症状的情况下突然死亡。现有的筛查和诊断方法不足以在事件发生之前识别可能的受害者 - 仅在美国,每年就有大约 500,000 人死于血管造影评估中被认为“无关紧要”的斑块破裂。临床上迫切需要一种技术,该技术能够 a) 识别动脉粥样硬化斑块的存在和位置,b) 表征预测斑块破裂的病理特征,包括斑块内大量脂质聚集、纤维帽变薄以及动脉粥样硬化斑块的浸润。纤维帽肩部的巨噬细胞,c) 引导冠状动脉介入治疗,包括经皮球囊血管成形术、血管内支架置入术、消融/汽化和近距离放射治疗。为了满足这一临床需求,我们建议开发一种先进的、基于导管的组合超声和光声成像技术,能够可视化动脉粥样硬化斑块的功能特性。因此,我们研究计划的总体目标是开发一种体内、微创、功能性甚至分子特异性成像技术 - 组合 IVUS/IVPA 成像 - 能够立即准确地评估关键阶段动脉粥样硬化斑块的存在和脆弱性。必须解决广泛的科学和工程、生物医学和临床问题才能全面测试 IVUS/IVPA 成像。当前申请的中心主题有三个:设计和构建 IVUS/IVPA 成像系统原型、开发适用于 IVUS/IVPA 成像系统的新型分子敏感造影剂、以及初步测试已开发的 IVPA/IVUS 成像技术模拟组织模型、3D 细胞组织结构、动脉粥样硬化小动物模型,最后是切除的人体组织。目前的研究旨在证明体内 IVUS/IVPA 成像的实用性和可行性。在本研究结束时,我们将与工业合作伙伴合作,准备建立临床 IVUS/IVPA 成像系统,展示已开发技术在介入心脏病学中的应用。
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)
Intravascular photoacoustics for image-guidance and temperature monitoring during plasmonic photothermal therapy of atherosclerotic plaques: a feasibility study.
- DOI:10.7150/thno.7143
- 发表时间:2013
- 期刊:
- 影响因子:12.4
- 作者:Yeager D;Chen YS;Litovsky S;Emelianov S
- 通讯作者:Emelianov S
Conjugation of antibodies to gold nanorods through Fc portion: synthesis and molecular specific imaging.
- DOI:10.1021/bc3004815
- 发表时间:2013-06-19
- 期刊:
- 影响因子:4.7
- 作者:Joshi, Pratixa P.;Yoon, Soon Joon;Hardin, William G.;Emelianov, Stanislav;Sokolov, Konstantin V.
- 通讯作者:Sokolov, Konstantin V.
Thermal intravascular photoacoustic imaging.
- DOI:10.1364/boe.2.003072
- 发表时间:2011-11-01
- 期刊:
- 影响因子:3.4
- 作者:Wang B;Emelianov S
- 通讯作者:Emelianov S
Tissue-mimicking phantoms for photoacoustic and ultrasonic imaging.
- DOI:10.1364/boe.2.003193
- 发表时间:2011-11-01
- 期刊:
- 影响因子:3.4
- 作者:Cook JR;Bouchard RR;Emelianov SY
- 通讯作者:Emelianov SY
Influence of nanosecond pulsed laser irradiance on the viability of nanoparticle-loaded cells: implications for safety of contrast-enhanced photoacoustic imaging.
- DOI:10.1088/0957-4484/24/46/465101
- 发表时间:2013-11-22
- 期刊:
- 影响因子:3.5
- 作者:Bayer CL;Kelvekar J;Emelianov SY
- 通讯作者:Emelianov SY
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
STANISLAV Y EMELIANOV其他文献
STANISLAV Y EMELIANOV的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('STANISLAV Y EMELIANOV', 18)}}的其他基金
Image-guided cancer therapy using heat activatable CAR T cells
使用热激活 CAR T 细胞进行图像引导癌症治疗
- 批准号:
10701849 - 财政年份:2022
- 资助金额:
$ 70万 - 项目类别:
Image-guided cancer therapy using heat activatable CAR T cells
使用热激活 CAR T 细胞进行图像引导癌症治疗
- 批准号:
10587560 - 财政年份:2022
- 资助金额:
$ 70万 - 项目类别:
Trimodal vitality imaging of neural progenitor cells in the spinal cord
脊髓神经祖细胞的三模态活力成像
- 批准号:
10221069 - 财政年份:2020
- 资助金额:
$ 70万 - 项目类别:
Trimodal vitality imaging of neural progenitor cells in the spinal cord
脊髓神经祖细胞的三模态活力成像
- 批准号:
10032744 - 财政年份:2020
- 资助金额:
$ 70万 - 项目类别:
Trimodal Vitality Imaging of Neural Progenitor Cells in the Spinal Cord
脊髓神经祖细胞的三模态活力成像
- 批准号:
10397429 - 财政年份:2020
- 资助金额:
$ 70万 - 项目类别:
Ultrasound-guided photoacoustic imaging and tracking of stem cells in the spinal cord
超声引导光声成像和脊髓干细胞追踪
- 批准号:
9978212 - 财政年份:2020
- 资助金额:
$ 70万 - 项目类别:
Trimodal Vitality Imaging of Neural Progenitor Cells in the Spinal Cord
脊髓神经祖细胞的三模态活力成像
- 批准号:
10611905 - 财政年份:2020
- 资助金额:
$ 70万 - 项目类别:
Magnetic Steering and Longitudinal Visualization of Stem Cells for Trabecular Meshwork Therapy in Glaucoma
用于青光眼小梁网治疗的干细胞磁控和纵向可视化
- 批准号:
10653277 - 财政年份:2019
- 资助金额:
$ 70万 - 项目类别:
Magnetic Steering and Longitudinal Visualization of Stem Cells for Trabecular Meshwork Therapy in Glaucoma
用于青光眼小梁网治疗的干细胞磁控和纵向可视化
- 批准号:
10459456 - 财政年份:2019
- 资助金额:
$ 70万 - 项目类别:
Magnetic Steering and Longitudinal Visualization of Stem Cells for Trabecular Meshwork Therapy in Glaucoma
用于青光眼小梁网治疗的干细胞磁控和纵向可视化
- 批准号:
10179400 - 财政年份:2019
- 资助金额:
$ 70万 - 项目类别:
相似国自然基金
典型草原不同退化类型雪水消融过程水分转换效率研究
- 批准号:32360295
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
玛纳斯河流域上游吸收性气溶胶来源及其对积雪消融的影响研究
- 批准号:42307523
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于超声混合深度神经网络对PIMSRA心肌热消融边界的实时可视化与识别研究
- 批准号:82302204
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于荷顺铂温敏纳米凝胶载KU135介入栓塞联合射频消融治疗肝癌的实验研究
- 批准号:82302331
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
消融热效应下肝癌超级增强子驱动的DNAJB1与cIAP2互作对中性粒细胞胞外诱捕网(NETs)形成的作用及机制探究
- 批准号:82302319
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of an automatic real-time personalized non-invasive localization of the site of origin of the earliest ventricular activation
开发最早心室激动起源部位的自动实时个性化无创定位
- 批准号:
10579726 - 财政年份:2023
- 资助金额:
$ 70万 - 项目类别:
Determining the Efficacy of Corneal Cross-Linking Protocols using Brillouin Microscopy
使用布里渊显微镜确定角膜交联方案的功效
- 批准号:
10642876 - 财政年份:2022
- 资助金额:
$ 70万 - 项目类别:
Determining the Efficacy of Corneal Cross-Linking Protocols using Brillouin Microscopy
使用布里渊显微镜确定角膜交联方案的功效
- 批准号:
10443488 - 财政年份:2022
- 资助金额:
$ 70万 - 项目类别:
Magnetic Bronchoscope for Improved Pulmonary Access
用于改善肺部通路的磁力支气管镜
- 批准号:
10152980 - 财政年份:2021
- 资助金额:
$ 70万 - 项目类别:
Contrast-Enhanced Ultrasound for Diagnosis and Therapy of Cholangiocarcinoma
超声造影对胆管癌的诊断和治疗
- 批准号:
10356516 - 财政年份:2021
- 资助金额:
$ 70万 - 项目类别: