Determining the Efficacy of Corneal Cross-Linking Protocols using Brillouin Microscopy
使用布里渊显微镜确定角膜交联方案的功效
基本信息
- 批准号:10642876
- 负责人:
- 金额:$ 39.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAblationAccelerationAccountingAddressAffectAnimalsBehaviorBiomechanicsClinicClinicalClinical ResearchCorneaCorneal StromaDataDevelopmentDiffusionDiseaseElasticityElementsEpitheliumEvaluationEvolutionExcisionEyeFDA approvedFutureGoalsHumanHydration statusImageIn SituKeratoconusKeratoplastyLasersLinkLongitudinal StudiesMapsMeasurementMeasuresMechanical StressMechanicsMethodsMicroscopyModelingModulusMorphologyOpticsOryctolagus cuniculusOutcomePatientsPhotorefractive KeratectomyPhotosensitizing AgentsProceduresProcessProtocols documentationPublic HealthQuality of lifeRecoveryResearchResistanceResolutionRiboflavinSafetyShapesSpatial DistributionSpeedTechniquesTechnologyTestingThickTimeTissuesTranslatingTreatment ProtocolsUltraviolet A radiationVisionVisualVisual AcuityWorkclinical translationcohortcrosslinkefficacy evaluationexperimental studyhuman subjectimprovedin vivoindividualized medicinenovelpatient tolerabilitypredict clinical outcomepredictive modelingprogramsprotocol developmentpublic health relevancerational designresearch clinical testingresponsetime usetomographytreatment planning
项目摘要
ABSTRACT:
Keratoconus and related corneal ectatic diseases cause significantly decreased quality of life, are the leading
cause for full thickness corneal transplant in the US, and are significantly more prevalent than previously thought.
Corneal cross-linking (CXL) has emerged as a clinical technique to halt keratoconus progression by stiffening
the corneal stroma. Despite being used clinically for more than a decade, it is currently impossible to assess
CXL protocol efficacy or predict the long-term stability and because we lack quantitative biomechanical measures
to inform predictive models. Currently available metrics to characterize CXL responses are morphologic and
have not proven predictive of clinical outcomes. The major gap is the lack of measurement techniques that can
accurately and non-perturbatively characterize corneal mechanics with three-dimensional (3-D) resolution in
vivo. To address this need, in the past decade we have pioneered Brillouin microscopy, a high-resolution optical
technology that can measure corneal longitudinal modulus in situ in 3-D without contacting or perturbing the eye.
Brillouin microscopy has provided the first and only direct mechanical evidence of decreased modulus in
keratoconus corneas in vivo and the only 3-D maps of CXL-induced corneal stiffening. The overall goal of this
research program is to combine 3-D Brillouin corneal maps and finite element (FE) modeling to quantitatively
predict corneal shape outcomes after CXL protocols. In strong preliminary data, we demonstrated that, by
accounting for tissue hydration, we can establish the quantitative relationship between Brillouin-measured
longitudinal modulus and Young’s modulus. Thus, our central hypothesis is that spatial maps of corneal Young’s
modulus derived from quantitative Brillouin microscopy will enable accurate prediction of corneal shape behavior
via FE modeling. The development of this noninvasive measure of corneal stiffness also enables us to use a
rabbit model to evaluate, for the first time, both morphologic and mechanical evolution in longitudinal studies in
vivo, validated by direct mechanical analysis using experimental protocols that cannot be performed in human
subjects. We will test our central hypothesis through the three specific aims: 1) Validate in vivo Brillouin
mechanical measurements after CXL; 2) Quantify the in vivo mechanical outcomes of novel CXL protocols; and
3) Link CXL biomechanical impact to morphologic outcome with Brillouin imaging and FE modeling. This
research is significant because accurate nondestructive, nonperturbative elasticity-based metrics will drive a
paradigm shift in how CXL protocols are evaluated, developed, and performed clinically as well as ultimately
allow us to develop individualized CXL treatment protocols.
抽象的:
圆锥角膜和相关的角膜扩张性疾病导致生活质量显着下降,是导致生活质量显着下降的主要原因
这是美国进行全层角膜移植的原因,并且比之前想象的要普遍得多。
角膜交联 (CXL) 已成为一种通过硬化来阻止圆锥角膜进展的临床技术
尽管在临床上使用了十多年,但目前还无法对其进行评估。
CXL 方案功效或预测长期稳定性,因为我们缺乏定量的生物力学测量
目前可用的表征 CXL 反应的指标包括形态学和
尚未证明可以预测临床结果,主要差距是缺乏可以预测的测量技术。
准确且无扰动地表征具有三维 (3-D) 分辨率的角膜力学
为了满足这一需求,在过去的十年中,我们率先推出了布里渊显微镜,这是一种高分辨率光学显微镜。
该技术可以在不接触或干扰眼睛的情况下原位测量 3D 角膜纵向模量。
布里渊显微镜提供了第一个也是唯一一个模量降低的直接机械证据
体内圆锥角膜和 CXL 引起的角膜硬化的唯一 3D 图。
研究计划是将 3-D 布里渊角膜图和有限元 (FE) 建模相结合来定量
通过强有力的初步数据,我们证明了预测 CXL 方案后的角膜形状结果。
考虑到组织水合作用,我们可以建立布里渊测量之间的定量关系
因此,我们的中心假设是角膜杨氏空间图
来自定量布里渊显微镜的模量将能够准确预测角膜形状行为
通过有限元建模,这种非侵入性角膜硬度测量方法的发展也使我们能够使用
兔子模型首次在纵向研究中评估形态和机械进化
体内,使用无法在人体中进行的实验方案通过直接机械分析进行验证
我们将通过三个具体目标来检验我们的中心假设:1)验证体内布里渊。
CXL 后的机械测量;2) 量化新型 CXL 方案的体内机械结果;
3) 通过布里渊成像和有限元建模将 CXL 生物力学影响与形态结果联系起来。
研究意义重大,因为准确的非破坏性、非微扰的基于弹性的指标将推动
CXL 方案在临床以及最终的评估、开发和执行方式的范式转变
让我们能够制定个性化的 CXL 治疗方案。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William Joseph Dupps其他文献
William Joseph Dupps的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William Joseph Dupps', 18)}}的其他基金
Advanced Imaging and Simulation Tools for Personalized Corneal Disease Assessment and Surgery
用于个性化角膜疾病评估和手术的先进成像和模拟工具
- 批准号:
10644983 - 财政年份:2022
- 资助金额:
$ 39.69万 - 项目类别:
Advanced Imaging and Simulation Tools for Personalized Corneal Disease Assessment and Surgery
用于个性化角膜疾病评估和手术的先进成像和模拟工具
- 批准号:
10365675 - 财政年份:2022
- 资助金额:
$ 39.69万 - 项目类别:
Determining the Efficacy of Corneal Cross-Linking Protocols using Brillouin Microscopy
使用布里渊显微镜确定角膜交联方案的功效
- 批准号:
10443488 - 财政年份:2022
- 资助金额:
$ 39.69万 - 项目类别:
Noninvasive assessment of the cornea by diffusion OCT
通过扩散 OCT 对角膜进行无创评估
- 批准号:
10421300 - 财政年份:2018
- 资助金额:
$ 39.69万 - 项目类别:
Noninvasive assessment of the cornea by diffusion OCT
通过扩散 OCT 对角膜进行无创评估
- 批准号:
10171859 - 财政年份:2018
- 资助金额:
$ 39.69万 - 项目类别:
Corneal Elastography and Patient-Specific Modeling for Simulation-based Therapy
用于基于模拟的治疗的角膜弹性成像和患者特异性建模
- 批准号:
8482579 - 财政年份:2013
- 资助金额:
$ 39.69万 - 项目类别:
Corneal Elastography and Patient-Specific Modeling for Simulation-based Therapy
用于基于模拟的治疗的角膜弹性成像和患者特异性建模
- 批准号:
8664399 - 财政年份:2013
- 资助金额:
$ 39.69万 - 项目类别:
RESOURCE/SERVICE CORE A - OCULAR IMAGING MODULE
资源/服务核心 A - 眼部成像模块
- 批准号:
9153316 - 财政年份:
- 资助金额:
$ 39.69万 - 项目类别:
RESOURCE/SERVICE CORE A - OCULAR IMAGING MODULE
资源/服务核心 A - 眼部成像模块
- 批准号:
9336309 - 财政年份:
- 资助金额:
$ 39.69万 - 项目类别:
相似国自然基金
典型草原不同退化类型雪水消融过程水分转换效率研究
- 批准号:32360295
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
玛纳斯河流域上游吸收性气溶胶来源及其对积雪消融的影响研究
- 批准号:42307523
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于超声混合深度神经网络对PIMSRA心肌热消融边界的实时可视化与识别研究
- 批准号:82302204
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于荷顺铂温敏纳米凝胶载KU135介入栓塞联合射频消融治疗肝癌的实验研究
- 批准号:82302331
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
消融热效应下肝癌超级增强子驱动的DNAJB1与cIAP2互作对中性粒细胞胞外诱捕网(NETs)形成的作用及机制探究
- 批准号:82302319
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Investigating cerebrovascular dysfunction and cerebral atrophy in severe traumatic brain injury
严重颅脑损伤中脑血管功能障碍和脑萎缩的调查
- 批准号:
10742569 - 财政年份:2023
- 资助金额:
$ 39.69万 - 项目类别:
Ultrasound-guided Ultra-steerable Histotripsy Array System for Non-invasive treatment of Soft Tissue Sarcoma
超声引导超可控组织解剖阵列系统用于软组织肉瘤的无创治疗
- 批准号:
10649994 - 财政年份:2023
- 资助金额:
$ 39.69万 - 项目类别:
Deciphering the Molecular Genetics of VSIG10L in Barrett's Neoplasia
破译巴雷特瘤形成中 VSIG10L 的分子遗传学
- 批准号:
10713939 - 财政年份:2023
- 资助金额:
$ 39.69万 - 项目类别:
Translating Novel Peripheral Nerve Allograft Technologies Toward Clinical Use
将新型周围神经同种异体移植技术转化为临床应用
- 批准号:
10660790 - 财政年份:2023
- 资助金额:
$ 39.69万 - 项目类别: