Isolating region specific α-syn-mediated mechanisms in mitochondrial function in vivo

体内线粒体功能中分离区域特异性 α-syn 介导的机制

基本信息

项目摘要

Parkinson's disease (PD) is characterized by the loss of dopaminergic (DA) neurons and the accumulation of Lewy Bodies (LB), but the underlying causative mechanism is unknown. So far, mutations in more than 8 genes, implicated in many different cellular pathways are identified to cause familial PD (fPD). However, these genes are also risk factors for sporadic PD (sPD), suggesting that both fPD and sPD could arise due to common patho- logical mechanisms. Interestingly, while a plethora of mitochondrial processes are thought to be influenced by mutant α-syn, the protein that is present in Lewy Bodies, fundamental questions still remain as to how normal, unmutated α-syn contributes to mitochondrial homeostasis and how mutant, diseased α-syn cause mitochon- drial dysfunction seen in PD. This is because several reports show contrasting/conflicting results depending on the cell types used and the α-syn expression level tested. Therefore, to address this gap in knowledge what is currently lacking is a cohesive strategy to successfully unravel the physiological from the pathological role of α- syn in mitochondrial biology in vivo. The long-term goal of this proposal is to understand how α-syn-mediated mitochondrial dysfunction contributes to PD at the resolution of a single mitochondrion in a whole organism. The central hypothesis of this proposal is that particular regions of α-syn have critical roles in maintaining mi- tochondrial homeostasis. Using transgenic animals containing N-terminal deletions or C-terminal PTM dele- tions, two predictions will be tested: 1) the N-terminus of α-syn affects mitochondrial fragmentation pathways, and 2) the C-terminus of α-syn affects mitochondrial damage/oxidation mechanisms. A unique strategy that utilizes in vivo imaging and computation analysis of signal mitochondrion in a genetic model organism (Dro- sophila) coupled with biochemistry will be employed. The rational is that once the a-syn-mediated roles on mi- tochondrial biology are uncovered, innovative approaches to target effective therapeutics to maintain mitochon- drial health can be initiated. Currently there are no cures for PD. Current FDA approved treatments only reduce symptoms. This work has significant impact on isolating the region specific α-syn-mediated mechanisms on mitochondrial biology, and obtaining knowledge on how a common pathway contributes to PD pathology, em- phasizing a novel avenue for targeted therapeutics early before neuronal loss and clinical manifestation of both fPD/sPD. This work is innovative as it represents a new/substantive departure from the status quo; the ap- proach of isolating the physiological and pathological roles of a-syn in mitochondrial health in vivo, in an organ- ism; highlighting a potential disease pathway for the clinical manifestation of not just PD, but also other synu- cleinopathies, including stress induced TBI. The proposed research is significant, because it is expected to verti- cally advance/expand current knowledge on how PD is initiated, considerably impacting current paradigms to dramatically propel the development of novel modifiers against a-syn-mediated mitochondrial defects.
帕金森病 (PD) 的特点是多巴胺能 (DA) 神经元的丧失和多巴胺能 (DA) 神经元的积累 路易体(LB),但目前尚不清楚其潜在致病机制,超过8个基因发生突变。 与许多不同的细胞途径有关的基因被确定可导致家族性帕金森病 (fPD)。 也是散发性帕金森病 (sPD) 的危险因素,表明 fPD 和 sPD 都可能由于共同的病理原因而发生 逻辑机制是负面的,而大量的线粒体过程被认为受到影响。 突变体 α-syn 是路易体中存在的蛋白质,但基本问题仍然存在,即如何正常, 未突变的 α-syn 有助于线粒体稳态,以及突变、患病的 α-syn 如何导致线粒体- PD 中出现的干燥功能障碍是因为一些报告显示了对比/冲突的结果,具体取决于不同的情况。 因此,要解决这一知识空白是什么。 目前缺乏一种有凝聚力的策略来成功阐明α-的生理作用和病理作用 syn 在体内线粒体生物学中的作用 该提案的长期目标是了解 α-syn 是如何介导的。 线粒体功能障碍导致整个生物体中单个线粒体分辨率的PD。 该提案的中心区域假设是,α-syn 的特殊性在维持 mi- 方面具有关键作用。 使用含有 N 末端缺失或 C 末端 PTM 缺失的转基因动物。 系统蒸发散,将测试两个预测:1)α-syn 的 N 末端影响线粒体断裂途径, 2) α-syn 的 C 末端影响线粒体损伤/氧化机制的独特策略。 利用遗传模型生物体中信号线粒体的体内成像和计算分析(Dro- sophila)与生物化学相结合的原理是,一旦a-syn介导的作用对mi-。 线粒体生物学被发现,是针对维持线粒体的有效疗法的创新方法 目前 FDA 批准的治疗方法只能减轻帕金森病的症状。 这项工作对于分离区域特异性 α-syn 介导的机制具有重大影响。 线粒体生物学,并获得有关共同途径如何促进 PD 病理学的知识,em- 在神经元损失和临床表现之前尽早确定靶向治疗的新途径 fPD/sPD 是一项创新,因为它代表了对现状的新的/实质性的偏离; 分离a-syn在体内线粒体健康中的生理和病理作用的方法,在器官中 主义;强调了不仅是帕金森病临床表现的潜在疾病途径,也是其他疾病的潜在疾病途径。 包括应激诱发的 TBI 在内的癌症疾病,这项研究意义重大,因为它预计会导致脑损伤。 极大地推进/扩展了关于如何启动 PD 的当前知识,极大地影响了当前的范式 极大地推动了针对 a-syn 介导的线粒体缺陷的新型修饰剂的开发。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shermali Gunawardena其他文献

Shermali Gunawardena的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shermali Gunawardena', 18)}}的其他基金

Dissecting the in vivo role of glycogen synthase kinase-3 beta (GSK3b) in the function of kinesin-1 using CRISPR/cas-1
使用 CRISPR/cas-1 剖析糖原合酶激酶 3 beta (GSK3b) 在驱动蛋白-1 功能中的体内作用
  • 批准号:
    10064240
  • 财政年份:
    2020
  • 资助金额:
    $ 15.84万
  • 项目类别:
Dissecting the in vivo role of Huntingtin in Rab vesicle movement on microtubules
剖析亨廷顿蛋白在微管上 Rab 囊泡运动中的体内作用
  • 批准号:
    8721495
  • 财政年份:
    2013
  • 资助金额:
    $ 15.84万
  • 项目类别:
Dissecting the in vivo role of Huntingtin in Rab vesicle movement on microtubules
剖析亨廷顿蛋白在微管上 Rab 囊泡运动中的体内作用
  • 批准号:
    8638505
  • 财政年份:
    2013
  • 资助金额:
    $ 15.84万
  • 项目类别:

相似国自然基金

CircRNA176/miR-21调控星形胶质细胞活化影响视神经损伤后轴突再生的机制研究
  • 批准号:
    82101459
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于TGF-β通路研究红景天苷调控缺血性脑卒中小胶质细胞和神经细胞crosstalk对轴突发芽的影响
  • 批准号:
    82174001
  • 批准年份:
    2021
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
轴突运输相关基因罕见变异对于肌萎缩侧索硬化发病和表型影响的作用及机制研究
  • 批准号:
    82001361
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
三维微环境下基质刚度梯度影响神经元轴突趋向性生长的机制研究
  • 批准号:
    11972280
  • 批准年份:
    2019
  • 资助金额:
    63 万元
  • 项目类别:
    面上项目

相似海外基金

The role of core circadian regulator Bmal1 in axonal regeneration and nerve repair
核心昼夜节律调节因子 Bmal1 在轴突再生和神经修复中的作用
  • 批准号:
    10677932
  • 财政年份:
    2023
  • 资助金额:
    $ 15.84万
  • 项目类别:
Design and testing of a novel circumesophageal cuff for chronic bilateral subdiaphragmatic vagal nerve stimulation (sVNS)
用于慢性双侧膈下迷走神经刺激(sVNS)的新型环食管套囊的设计和测试
  • 批准号:
    10702126
  • 财政年份:
    2023
  • 资助金额:
    $ 15.84万
  • 项目类别:
Retinal Circuitry Response to Nerve Injury
视网膜回路对神经损伤的反应
  • 批准号:
    10751621
  • 财政年份:
    2023
  • 资助金额:
    $ 15.84万
  • 项目类别:
Cross-modal plasticity after the loss of vision at two early developmental ages in the posterior parietal cortex: Adult connections, cortical function and behavior.
后顶叶皮质两个早期发育年龄视力丧失后的跨模式可塑性:成人连接、皮质功能和行为。
  • 批准号:
    10751658
  • 财政年份:
    2023
  • 资助金额:
    $ 15.84万
  • 项目类别:
Cellular Mediators of Dentate Pattern Separation in Epilepsy
癫痫齿状模式分离的细胞介质
  • 批准号:
    10752729
  • 财政年份:
    2023
  • 资助金额:
    $ 15.84万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了