Dissecting the in vivo role of glycogen synthase kinase-3 beta (GSK3b) in the function of kinesin-1 using CRISPR/cas-1

使用 CRISPR/cas-1 剖析糖原合酶激酶 3 beta (GSK3b) 在驱动蛋白-1 功能中的体内作用

基本信息

项目摘要

Despite the discovery that molecular motors are phosphorylated 25 years ago, fundamental questions on the identity of the protein kinase(s) or the particular phosphorylation sites, and how they function to control motors remain unanswered. Since kinase cascades display considerable crosstalk and play multiple roles in cell home- ostasis, deciphering which kinase is involved in a particular process has been difficult. Further, there is some debate as to the extent to which phosphorylation inhibits or stimulates intracellular transport, the extent regulatory mechanisms are conserved between species, and how in vitro mechanisms translate to in vivo systems. Thus, what is lacking is a cohesive strategy to successfully unravel how phosphorylation contributes to the spatial and temporal regulatory mechanisms that control intracellular transport in vivo, without which targeting effective treat- ments to a pathway that is likely disrupted early in disease such as cancer or neurodegeneration is unattainable. The long-term goal is to identify the cellular/molecular mechanisms involved in the regulation of intracellular transport in vivo. The overall objective is to develop an in vivo platform to tease out how a specific kinase controls motor function by identifying the precise functional sites involved, and by isolating the regulatory steps from a complex network of mechanisms. The central hypothesis is that the kinase glycogen synthase kinase-3beta (GSK3b) differentially phosphorylates particular sites on kinesin-1 to control intracellular transport in vivo. The rationale for the proposed research is that once the in vivo mechanisms of how GSK3b is involved in kinesin- mediated transport are known, the field will be a step closer to identifying the complex mechanisms that govern the motility of numerous cellular cargoes on MT tracks for their delivery to distal sites. Guided by strong prelimi- nary data, this hypothesis will be tested by pursuing the specific aim; identify that GSK3b-regulates kinesin-1 function during intracellular transport in vivo. Two objectives will be pursued; generate heritable GSK3b phos- phorylation defective/active KHC/KLC fly lines using the CRISPR/Cas system (Objective 1), and identify the in vivo mechanisms of how GSK3b-mediated phosphorylation controls kinesin-1 function during intracellular transport (Objective 2). The experimental strategy used employs an already proven in vivo approach, coupled with Drosophila genetics, integrated with biochemical analysis and biophysical paradigms. This methodology is innovative in the applicant’s opinion, because it departs from the status quo by enabling the analysis of particular GSK3b-phosphorylation events on kinesin-1 subunits in vivo, which will lead to a better understanding of the mechanistic details of how kinesin-1 functions; which appear to be considerably different from what is currently known from in vitro studies. The proposed research is significant, because it is expected to vertically advance and transform what is currently known, under physiological conditions, in a whole organism setting. The knowledge acquired will dramatically propel the development of precise pharmacological/genetic modifiers against defects in this pathway which will benefit the treatment of cancer and neurodegeneration.
尽管 25 年前就发现分子马达被磷酸化,但关于分子马达的基本问题 蛋白激酶或特定磷酸化位点的身份,以及它们如何发挥控制电机的作用 由于激酶级联显示出相当大的串扰并在细胞归巢中发挥多种作用,因此仍然没有答案。 稳态,破译哪种激酶参与特定过程一直很困难。 关于磷酸化抑制或刺激细胞内运输的程度、调节程度的争论 机制在物种之间是保守的,以及体外机制如何转化为体内系统。 所缺乏的是一个有凝聚力的策略来成功地揭示磷酸化如何促进空间和 控制体内细胞内运输的时间调节机制,如果没有这种机制,靶向有效的治疗 对癌症或神经退行性疾病等疾病早期可能被破坏的途径进行治疗是不可能的。 长期目标是确定参与细胞内调节的细胞/分子机制。 总体目标是开发一个体内平台来弄清楚特定激酶如何控制。 通过识别所涉及的精确功能位点,并通过将调节步骤与 复杂的机制网络。中心假设是激酶糖原合酶激酶-3β。 (GSK3b) 差异磷酸化驱动蛋白-1 上的特定位点以控制体内细胞内转运。 拟议研究的基本原理是,一旦 GSK3b 参与驱动蛋白的体内机制 介导的运输是已知的,该领域将更接近确定控制的复杂机制 MT 轨道上大量细胞货物的运动性,在强大的预先限制的引导下运送到远端站点。 没有任何数据,该假设将通过追求特定目标来检验;确定 GSK3b 调节驱动蛋白-1; 我们将追求两个目标:产生可遗传的 GSK3b 磷酸。 使用 CRISPR/Cas 系统(目标 1)对磷酸化缺陷/活性 KHC/KLC 蝇系进行分析(目标 1),并识别其中的 GSK3b 介导的磷酸化在细胞内控制驱动蛋白 1 功能的体内机制 运输(目标 2)。所使用的实验策略采用了已经经过验证的体内方法。 果蝇遗传学,结合生化分析和生物物理范式。 申请人认为这是创新的,因为它通过对特定的分析进行分析而脱离了现状 体内驱动蛋白 1 亚基上的 GSK3b 磷酸化事件,这将有助于更好地了解 kinesin-1 功能的机制细节似乎与目前的有很大不同; 从体外研究中得知,拟议的研究意义重大,因为它有望纵向推进。 并在生理条件下,在整个有机体环境中改变目前已知的东西。 获得的知识将极大地推动精确药理学/基因修饰剂的发展 对抗该途径的缺陷,这将有利于癌症和神经退行性疾病的治疗。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shermali Gunawardena其他文献

Shermali Gunawardena的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shermali Gunawardena', 18)}}的其他基金

Isolating region specific α-syn-mediated mechanisms in mitochondrial function in vivo
体内线粒体功能中分离区域特异性 α-syn 介导的机制
  • 批准号:
    10809994
  • 财政年份:
    2023
  • 资助金额:
    $ 15.71万
  • 项目类别:
Dissecting the in vivo role of Huntingtin in Rab vesicle movement on microtubules
剖析亨廷顿蛋白在微管上 Rab 囊泡运动中的体内作用
  • 批准号:
    8721495
  • 财政年份:
    2013
  • 资助金额:
    $ 15.71万
  • 项目类别:
Dissecting the in vivo role of Huntingtin in Rab vesicle movement on microtubules
剖析亨廷顿蛋白在微管上 Rab 囊泡运动中的体内作用
  • 批准号:
    8638505
  • 财政年份:
    2013
  • 资助金额:
    $ 15.71万
  • 项目类别:

相似国自然基金

CircRNA176/miR-21调控星形胶质细胞活化影响视神经损伤后轴突再生的机制研究
  • 批准号:
    82101459
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于TGF-β通路研究红景天苷调控缺血性脑卒中小胶质细胞和神经细胞crosstalk对轴突发芽的影响
  • 批准号:
    82174001
  • 批准年份:
    2021
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
轴突运输相关基因罕见变异对于肌萎缩侧索硬化发病和表型影响的作用及机制研究
  • 批准号:
    82001361
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
三维微环境下基质刚度梯度影响神经元轴突趋向性生长的机制研究
  • 批准号:
    11972280
  • 批准年份:
    2019
  • 资助金额:
    63 万元
  • 项目类别:
    面上项目

相似海外基金

The role of core circadian regulator Bmal1 in axonal regeneration and nerve repair
核心昼夜节律调节因子 Bmal1 在轴突再生和神经修复中的作用
  • 批准号:
    10677932
  • 财政年份:
    2023
  • 资助金额:
    $ 15.71万
  • 项目类别:
Design and testing of a novel circumesophageal cuff for chronic bilateral subdiaphragmatic vagal nerve stimulation (sVNS)
用于慢性双侧膈下迷走神经刺激(sVNS)的新型环食管套囊的设计和测试
  • 批准号:
    10702126
  • 财政年份:
    2023
  • 资助金额:
    $ 15.71万
  • 项目类别:
Retinal Circuitry Response to Nerve Injury
视网膜回路对神经损伤的反应
  • 批准号:
    10751621
  • 财政年份:
    2023
  • 资助金额:
    $ 15.71万
  • 项目类别:
Cross-modal plasticity after the loss of vision at two early developmental ages in the posterior parietal cortex: Adult connections, cortical function and behavior.
后顶叶皮质两个早期发育年龄视力丧失后的跨模式可塑性:成人连接、皮质功能和行为。
  • 批准号:
    10751658
  • 财政年份:
    2023
  • 资助金额:
    $ 15.71万
  • 项目类别:
Cellular Mediators of Dentate Pattern Separation in Epilepsy
癫痫齿状模式分离的细胞介质
  • 批准号:
    10752729
  • 财政年份:
    2023
  • 资助金额:
    $ 15.71万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了